-
氮、磷污染是造成水体富营养化的主要原因,同时氮和磷也是一种重要资源,是生产农肥和畜禽饲料的原料。全球磷资源十分有限,且单向流动、难以再生。在现有技术、经济水平条件下,全球探明可供开采的磷矿资源不足100 a[1]。富含氮磷元素废水的排放不仅会造成氮磷的流失,还会造成地表水体富营养化。因此,高效回收废水中的氮磷资源,已成为相关领域的研究热点之一。
目前的氮磷共存水体主要是养殖废水、食品废水和市政污水。其中山东某食品公司产生的废水氨氮和总磷含量高达160 mg·L−1和100 mg·L−1,经过初沉池、UASB池、A/O池和二沉池处理后氨氮含量显著降低,但总磷含量依然高达77 mg·L−1[2]。此外,在甘肃某养牛场养殖废水中氨氮和磷酸盐质量浓度也高达1 304 mg·L−1和146 mg·L−1[3]。目前,最常用的脱氮除磷工艺为氧化沟工艺、A2O工艺和SBR工艺。但上述工艺对污水水质的稳定性要求较高,水质的大幅度变化会影响微生物脱氮除磷效果。此外,污水经二级处理后增加深度处理方能较好净化水质,但随之而来的是高昂的化学添加剂成本以及基建和电力费用。因此,寻找一种廉价的清洁材料用于同步、高效去除氮磷对于治理氮磷废水至关重要。
目前,磷酸铵镁(magnesium ammonium phosphate,MAP)结晶法往往具备同步实现对氮、磷的高效脱除和有效回收,广泛用于尿液、垃圾渗滤液、焦化废水的处理[4-6]。MAP英文俗名为struvite,中文俗称鸟粪石,化学成分为MgNH4PO4·6H2O,是一种较难溶于水的无色、白色(脱水后)、黄色、棕色或浅灰色的晶体,且含有氮、磷植物营养元素,是一种很好的缓释化肥[7-8]。其基本原理是在沼液中投加Mg2+,在碱性条件下使沼液中的PO43−、HPO42−、H2PO4−及NH4+与Mg2+反应成生MgNH4PO4·6H2O(struvite,即鸟粪石),从而回收水体的氮磷[9]。传统的MAP结晶法回收率较低,如磷结晶率达90%以上时,氨氮结晶率仅为13%左右,难以达到两者同步高效结晶[10]。鸟粪石的形成需要在较高的溶液pH条件下,需投加含Mg2+沉淀剂和碱溶液,原材料成本过高限制该方法的使用,且反应过后的材料回收困难[11]。HUANG等[12]利用镁盐改性天然沸石同步去除废水中的氮磷获得良好的去除效果。针对以上问题,选择一种自身碱性高、成本低和易回收的材料尤为重要。
常见镁来源有Mg(OH)2、MgSO4、MgCl2等。其中,MgO由于其安全稳定且自身碱性高等优点,受到广泛应用[10, 12-13]。生物炭比表面积大、离子交换能力强,可以去除水中的污染物[13-14]。并且生物炭表面呈负电荷,可以吸附水中的氨氮,但通常不能吸附磷酸盐。利用金属氧化物进行生物炭进行改性,可以有效改善其对磷的吸附性能[14]。生物质原料包括农业和森林残余物及其副产品(水稻秸秆[15]、小麦秸秆[16]、玉米芯[17]和菜叶[18]等)、动物粪便、造纸厂废料、城市固体废物和污泥[19-20]。选择市政污泥作为原料制备污泥基生物炭,具有来源稳定、成本低等优点,同时也为污泥的资源化利用提供了一种途径,具有良好社会意义。
因此,本研究开发了一种以镁离子为靶向供给、碱性调控能力强、成本低廉且易于回收的新型磁性污泥基生物炭复合材料(Mg/Fe sludge biochar, MF-SBC),用于废水中氮磷的同步回收。考察了初始pH、接触时间、共存离子、投加量对氮磷回收效果的影响,采用动力学模型等分析了回收特征,并结合XRD、XPS、SEM等多种表征手段探讨了新型磁性污泥基生物炭对水溶液中氮磷同步回收的作用机制,为其实际应用提供参考。
磁性污泥基生物炭的制备及其对水溶液中氮磷的同步回收
Preparation of magnetic sludge-based biochar for the simultaneous recovery of nitrogen and phosphorus from aqueous solution
-
摘要: 以城市污泥为原料与MgCl2和FeSO4复合,并热解碳化合成磁性污泥基生物炭(MF-SBC),用于水中氮磷的同步回收研究,分别考察了MF-SBC投加量、初始pH、接触时间和共存离子对氮磷回收性能的影响,同时通过SEM、XRD、BET、XPS和FTIR表征了MF-SBC的组成、形貌和官能团等,并对反应过程进行了动力学拟合。结果表明,当MF-SBC投加量为0.3 g·L−1、溶液初始pH为7、反应时间为720 min时,MF-SBC对水溶液中氨氮和磷酸盐的回收效果最佳,吸附量分别为103.12 mg·g−1和205.07 mg·g−1,并且MF-SBC对水中氨氮和磷酸盐的回收过程均符合准二级动力学模型。Ca2+、Na+、SO42对MF-SBC回收磷酸盐几乎没有影响,Ca2+和SO42-对氨氮的回收有抑制作用。MF-SBC对氮磷的回收机制包括表面吸附、离子交换和鸟粪石沉淀,其中以鸟粪石沉淀为主。Abstract: In this study, municipal sludge was taken as raw material combined with MgCl2 and FeSO4, magnetic sludge-based biochar (MF-SBC) was synthesized by pyrolysis carbonization, which was used to simultaneously recover nitrogen and phosphorus in water. Meanwhile, the effects of dosage, initial pH, contact time and coexisting ions on the recovery performance were investigated. The composition, morphology and functional groups of MF-SBC before and after adsorption were characterized by SEM, XRD, BET, XPS and FTIR, and the reaction process was fitted by kinetic models. The results showed that MF-SBC had the best recovery effect of ammonia nitrogen and phosphate in aqueous solution, and the maximum adsorption capacities were 103.12 mg·g−1 and 205.07 mg·g−1, respectively, when MF-SBC dosage was 0.3 g·L−1, the initial pH was 7, and the reaction time was 720 min, and the recovery process of ammonia nitrogen and phosphate in water by MF-SBC conformed to the pseudo-second-order kinetic model. Ca2+, Na+ and SO42- had slight effect on phosphate recovery by MF-SBC, Ca2+ and SO42− had an inhibitory effect on ammonia recovery. The recovery mechanism included surface adsorption, ion exchange and struvite precipitation, which was dominated by struvite precipitation.
-
Key words:
- sludge-based biochar /
- nitrogen and phosphorus /
- simultaneous recovery /
- struvite
-
表 1 MF-SBC同步吸附氨氮和磷酸盐的详细实验条件
Table 1. Experimental conditions for the simultaneous adsorption of nitrogen and phosphate by MF-SBC
影响因素 时间/min 氨氮质量浓度/
(mg·L−1)P质量浓度/
(mg·L−1)pH 共存离子 MF-SBC质量
浓度/(g·L−1)pH 720 160 80 3~11 — 0.3 MF-SBC
投加量720 160 80 9 — 0.1~0.5 共存离子 720 160 80 9 Ca2+、Na+、SO42− 0.3 反应时间 1~720 160 80 9 — 0.3 表 2 MF-SBC同步吸附氮磷的动力学拟合参数
Table 2. Kinetic parameters for the simultaneous adsorption of nitrogen and phosphorus by MF-SBC
污染物 准一级动力学 准二级动力学 Qe /(mg·g−1) k1/ min−1 R2 Qe
/(mg·g−1)k1/
(g·(mg·min)−1)R2 磷 168.44 0.0127 0.79 203.65 0.0012 0.99 氨氮 83.86 0.013 0.77 101.34 0.0017 0.99 表 3 MF-SBC同步吸附氮磷的颗粒内扩散模型参数
Table 3. Intra particle diffusion model parameters for the simultaneous adsorption of nitrogen and phosphorus by MF-SBC
污染物 S1 S2 S3 K R2 K R2 K R2 磷 11.57 0.95 25.07 - 0.83 0.92 氨氮 7.56 0.98 2.43 - 0.28 0.92 -
[1] 赵玉芬. 磷化学与化工进展[J]. 中国科学:化学, 2010, 40(7): 801. [2] 孙理密, 翟纪学, 张德清, 等. 高氮磷有机食品废水处理工程实例分析[J]. 工业水处理, 2022, 42(1): 171-174. [3] 聂坤, 杨成建, 李志华, 等. 鸟粪石结晶-絮凝沉淀同步法回收养殖场废水的氮磷[J]. 水处理技术, 2022, 48(7): 38-42. [4] XIE F, WU F, LIU G, et al. Removal of phosphate from eutrophic lakes through adsorption by in situ formation of magnesium hydroxide from diatomite[J]. Environmental Science & Technology, 2014, 48(1): 582-590. [5] ZENG, F Z, ZHAO Q L, JIN W B, et al. Struvite precipitation from anaerobic sludge supernatant and mixed fresh/stale human urine[J]. Chemical Engineering Journal, 2018, 344: 254-261. doi: 10.1016/j.cej.2018.03.088 [6] 李亮, 王德汉, 邹璇. 曝气在沉淀法回收沼气发酵液氮磷中的作用[J]. 农业工程学报, 2010, 26(1): 313-318. [7] 张琪, 赵首萍, 叶雪珠, 等. 鸟粪石结晶法回收氮磷的影响因素研究[J]. 科技通报, 2015, 31(7): 237-244. [8] 霍守亮, 席北斗, 刘鸿亮. 磷酸铵镁沉淀法去除与回收废水中氮磷的应用研究进展[J]. 化工进展, 2017, 26(3): 371-376. [9] 杨明珍, 包震宇, 师晓春, 等. 鸟粪石沉淀法处理沼液实验研究[J]. 工业安全与环保, 2016, 37(3): 31-32. [10] BARBOSA S G, PEIXOTO L, MEULMAN B, et al. A design of experiments to assess phosphorous removal and crystal properties in struvite precipitation of source separated urine using different Mg sources[J]. Chemical Engineering Journal, 2016, 298: 146-153. doi: 10.1016/j.cej.2016.03.148 [11] 吴彦霖, 周荣敏. MAP法与沸石吸附组合工艺的脱氮除磷实验研究[J]. 中国环保产业, 2015(2): 45-48. [12] HUANG H, XIAO D, ZHANG Q, et al. Removal of ammonia from landfill leachate by struvite precipitation with the use of low-cost phosphate and magnesium sources[J]. Journal of Environmental Management, 145: 191-198. [13] 张记市, 王玉松. 鸟粪石结晶法回收垃圾渗滤液氨氮研究[J]. 环境工程学报, 2009, 3(11): 2017-2020. [14] ZHANG J S, WANG Q Q. Sustainable mechanisms of biochar derived from brewers' spent grain and sewage sludge for ammonia-nitrogen capture[J]. Journal of cleaner production, 2016, 112: 3927-3934. doi: 10.1016/j.jclepro.2015.07.096 [15] HALL K E, CALDERON M J, SPOKAS K A, et al. Phenolic acid sorption to biochars from mixtures of feedstock materials[J]. Water Air & Soil Pollution, 2014, 225(7): 2031. [16] FENG Y, XU Y, YU Y, et al. Mechanisms of biochar decreasing methane emission from Chinese paddy soils[J]. Soil Biology & Biochemistry, 2012, 46(1): 80-88. [17] 李时琛, 方海旭, 李俊青. 菜叶生物质炭的磷酸活化制备及其吸附性能研究[J]. 化工管理, 2018(1): 80-81. [18] BOESCH D F, BURRESON E, DENNISON W, et al. Factors in the decline of coastal ecosystems[J]. Science, 2001, 293(5535): 1589-1691. [19] ENDERS A, HANLEY K, WHITMAN T, et al. Characterization of biochars to evaluate recalcitrance and agronomic performance[J]. Bioresource Technology, 114: 644-653. [20] OZCAN A, OZCAN A S, TUNALI S, et al. Determination of the equilibrium, kinetic and thermodynamic parameters of adsorption of copper (II) ions onto seeds of Capsicum annuum[J]. 2005, 124: 200-208. [21] 杨奇亮, 吴平霄. 改性多孔生物炭的制备及其对水中四环素的吸附性能研究[J]. 环境科学学报, 2019, 39(12): 3973-3984. [22] LIU J W, JIANG J G, AIHEMAITI A, et al. Removal of phosphate from aqueous solution using MgO-modified magnetic biochar derived from anaerobic digestion residue[J]. Journal of Environmental Management, 2019, 250: 109438. doi: 10.1016/j.jenvman.2019.109438 [23] CUI X, HAO H, ZHANG C, et al. Capacity and mechanisms of ammonium and cadmium sorption on different wetland-plant derived biochars[J]. Science of the Total Environment, 2016, 539: 566-575. doi: 10.1016/j.scitotenv.2015.09.022 [24] LYU H H, GAO B, HE F, et al. Effects of ball milling on the physicochemical and sorptive properties of biochar: Experimental observations and governing mechanisms[J]. Environmental Pollution, 2018, 233: 54-63. doi: 10.1016/j.envpol.2017.10.037 [25] YAN H, SHIH K. Effects of calcium and ferric ions on struvite precipitation: A new assessment based on quantitative X-ray diffraction analysis[J]. Water Research, 2016, 95: 310-318. doi: 10.1016/j.watres.2016.03.032 [26] CHENG S, ZHAO S, GUO H, et al. High-efficiency removal of lead/cadmium from wastewater by MgO modified biochar derived from crofton weed[J]. Bioresource Technology, 2022, 343: 126081. doi: 10.1016/j.biortech.2021.126081 [27] LI A, XIE H, QIU Y, et al. Resource utilization of rice husk biomass: Preparation of MgO flake-modified biochar for simultaneous removal of heavy metals from aqueous solution and polluted soil[J]. Environmental Pollution, 2022, 310: 119869. doi: 10.1016/j.envpol.2022.119869 [28] WU J W, WANG T, WANG J, et al. A novel modified method for the efficient removal of Pb and Cd from wastewater by biochar: Enhanced the ion exchange and precipitation capacity[J]. Science of the Total Environment, 2021, 754: 142150. doi: 10.1016/j.scitotenv.2020.142150