Processing math: 100%

镧铁负载给水厂污泥复合材料在完全混合式反应器中的动态吸附除磷特征

刘文芬, 王毅力, 刘晨阳, 李小林, 仝瑶, 周妍卿. 镧铁负载给水厂污泥复合材料在完全混合式反应器中的动态吸附除磷特征[J]. 环境工程学报, 2022, 16(5): 1451-1458. doi: 10.12030/j.cjee.202112060
引用本文: 刘文芬, 王毅力, 刘晨阳, 李小林, 仝瑶, 周妍卿. 镧铁负载给水厂污泥复合材料在完全混合式反应器中的动态吸附除磷特征[J]. 环境工程学报, 2022, 16(5): 1451-1458. doi: 10.12030/j.cjee.202112060
LIU Wenfen, WANG Yili, LIU Chenyang, LI Xiaolin, TONG Yao, ZHOU Yanqing. Dynamic phosphorus removal from aqueous solutions by lanthanum/iron-loaded drinking water treatment residues in a continuous stirred tank reactor[J]. Chinese Journal of Environmental Engineering, 2022, 16(5): 1451-1458. doi: 10.12030/j.cjee.202112060
Citation: LIU Wenfen, WANG Yili, LIU Chenyang, LI Xiaolin, TONG Yao, ZHOU Yanqing. Dynamic phosphorus removal from aqueous solutions by lanthanum/iron-loaded drinking water treatment residues in a continuous stirred tank reactor[J]. Chinese Journal of Environmental Engineering, 2022, 16(5): 1451-1458. doi: 10.12030/j.cjee.202112060

镧铁负载给水厂污泥复合材料在完全混合式反应器中的动态吸附除磷特征

    作者简介: 刘文芬(1993—),女,硕士研究生,liuwenfen99@126.om
    通讯作者: 王毅力(1972—),男,博士,教授,wangyilimail@126.com
  • 基金项目:
    北京市科技计划课题项目(Z181100005518007);国家重点研发计划项目(2017YFC0505303)
  • 中图分类号: X703.1

Dynamic phosphorus removal from aqueous solutions by lanthanum/iron-loaded drinking water treatment residues in a continuous stirred tank reactor

    Corresponding author: WANG Yili, wangyilimail@126.com
  • 摘要: 采用共沉淀法制备出一种镧铁负载给水厂污泥复合材料(LaFe-DWTR),研究其在完全混合式反应器(CSTR)中对模拟废水和城市污水处理厂二沉池出水的除磷效果以及水力停留时间(HRT)、LaFe-DWTR投加量和水力学条件的影响。结果表明,当CSTR进水PO43−-P质量浓度为50 mg·L−1,HRT为3 h,LaFe-DWTR投加量为2 g·L−1,反应区采用搅拌时,LaFe-DWTR对PO43--P的去除率稳定在99%以上,吸附量可达24.82 mg·g−1。对于CSTR进水初始PO43−-P质量浓度为2 mg·L−1的城市污水处理厂二沉池出水,在3 h HRT,0.14 g·L−1投加量时,CSTR出水的PO43−-P质量浓度稳定在0.2 mg·L−1左右,已达到《城市污水处理厂污染物排放标准》(GB 18918–2002)一级A标准的要求。
  • 挥发性有机污染物(VOCs)来源广泛、组分复杂,对环境和人体均有一定危害[1-2],因此,近年来,对VOCs的减排与控制备受关注,相关标准逐渐明确、严格,已有许多针对VOCs处理技术的研究。现有的VOCs处理技术包括吸附法、吸收法、燃烧法、膜分离处理法、生物法、光催化降解和等离子体法[3]。但针对实际中产生的低浓度VOCs废气,前6种技术存在运行费用高、设备性能要求高、涉及产物复杂等劣势。而作为近些年新兴的低温等离子体技术(NTP)在净化低浓度VOCs时,具有反应迅速、启停便捷、设备简单[4-5]等优势,极具应用潜力。但是单一的NTP技术存在能耗依然较高、副产物难以避免等问题[6-7]。因此,研究者将吸附、等离子体氧化和催化耦合于一体,吸附-等离子体催化氧化技术便应时而生。填充的介质阻挡放电反应器(DBD)可以实现3种技术的有效结合,目前的研究已表明,间歇的吸附存储-等离子体催化技术不仅可以提高能量效率[8-9],而且还可以有效降低副产物的排放[10-11]

    在吸附-等离子体催化氧化技术中,催化剂的作用至关重要,不仅要有较好的吸附性能,还要有较好的等离子体催化氧化性能。锰基催化剂在协同低温等离子体降解不同挥发性有机物时表现出较优的氧化性能。郝翰[12]在石墨烯上通过电化学沉积法负载Mn3O4耦合介质阻挡放电来氧化降解甲苯,获得了较好的甲苯降解率以及CO2选择性,并有效控制了O3和NOx等副产物的产生;LYULYUKIN等[13]利用电晕放电联合TiO2来氧化丙酮和乙醇,发现含负载MnOx的催化剂不仅可以抑制副产物的生成,还促进了丙酮和乙醇的深度氧化,提高了CO2选择性;ODA[14]的研究结果显示,MnO2负载在氧化铝小球上,在低温等离子体氧化降解TCE时起到了积极的作用。向东等[15]在实验中也说明了介质阻挡放电与MnOx/SBA-15催化剂对正己醛氧化降解表现出了良好的协同效应,去除率最高可达99%。但目前针对等离子体联合催化技术用于氧化降解乙酸乙酯的研究还不充分,而乙酸乙酯是汽车制造、制药、电子制造等行业的代表性污染物[16],更是包装印刷行业VOC排放最为显著的复合膜干复工艺的主要污染物[17]。因此,针对低温等离子体联合锰基催化剂净化乙酸乙酯的研究有待于进一步深入。

    本研究以13X和γ-Al2O3为载体负载MnOx并联合低温等离子体氧化降解吸附态乙酸乙酯。以COx产率、CO2选择性以及副产物的生成量为评价指标,探究了不同载体或催化剂对乙酸乙酯的氧化性能及反应动力学的影响,为DBD降解挥发性有机物系统中催化剂的优化及其应用提供参考。

    实验以13X和γ-Al2O3(直径为3~5 mm,上海有新催化剂厂)为载体,Mn(NO3)2溶液为前驱体,采用等体积浸渍法制备MnOx/13X和MnOx/γ-Al2O3 2种锰基催化剂。制备条件:缓慢滴加一定量的前驱体溶液于载体上,然后静置过夜,干燥箱烘6 h(105 ℃),于马弗炉中焙烧3 h(500 ℃)。

    催化剂的比表面积采用比表面积及孔径分析仪(BET)(Micromeritics ASAP 2460, USA)分析。样品在250 ℃下进行脱气预处理4 h,在-196 ℃下,进行N2吸附-脱附实验。样品形貌利用日本电子JSM-6510LV型扫描电子显微镜分析。测定样品前,在20 mA 工作电流下喷金100 s,对样品进行预处理,扫描工作电压为15 kV。采用美国热电K-Alpha X射线光电子能谱仪(XPS)对催化剂表面的元素组成、含量进行测定,光源为Al Kα(1 486.6 eV)射线,能谱采用C1s的标准结合能284.5 eV进行校正,采用XPS peak4.1软件对谱图进行分峰拟合。

    实验系统流程如图1所示,实验系统主要由配气装置、等离子体反应器和测试系统组成。配气系统包含模拟空气(79 %N2、21 %O2)、质量流量计、注射泵、恒温水浴锅和缓冲混合瓶,用于产生1 L·min−1、1 571 mg·m−3的乙酸乙酯。反应装置为自制的线管式反应器,材质为石英玻璃(内径=21.5 mm),内电极为不锈钢丝(直径=0.8 mm),外电极为100 mm长的铜皮,缠绕在反应器外壁,接地。采用50 Hz交流高压电源(GJTK-0.01/30K,上海南罡电除尘器有限公司),电压为22 kV,电压-电流波形图见图2。实验产生的CO2、CO、N2O和乙酸乙酯浓度均采用傅里叶变换红外光谱仪(Nicolet Antaris IGS,Thermo Scientific Company)分析,O3浓度由臭氧检测仪(2B Technologies Model 106-M)测得。

    图 1  实验系统流程图
    Figure 1.  Schematic diagram of experimental set-up
    图 2  电压-电流波形图
    Figure 2.  Voltage-current waveform

    本实验分为吸附和放电2个阶段:1)在吸附阶段,乙酸乙酯吸附存储在填充的催化剂表面,此过程不放电;2)在放电阶段,以1 L·min−1的空气为放电背景气,利用放电产生的活性粒子,将吸附态乙酸乙酯氧化降解。

    实验中乙酸乙酯氧化的评价指标为COx产率和CO2选择性,方法见式(1)和式(2)。

    R=nCO2+nCO4nC4H8O2×100% (1)
    S=nCO2nCO2+nCO×100% (2)

    式中:R为COx产率;S为CO2选择性;nC4H8O2为乙酸乙酯的初始吸附量,mmol;nCO2nco分别为等离子体氧化降解阶段反应器出口的CO2和CO的量,mmol。

    1) COx浓度和CO2选择性。从图3(a)中可以看出,COx浓度随放电时间先是急剧上升然后缓慢降低,这是由于在放电初始时,催化剂表面乙酸乙酯的吸附量最多,大部分乙酸乙酯很快被氧化降解,产生了高浓度COx,但随着放电的进行,催化剂表面吸附的乙酸乙酯越来越少,所以反应器出口的COx也随之降低。不论是13X还是γ-Al2O3,负载MnOx之后,COx浓度明显升高。放电120 min后,MnOx/13X和MnOx/γ-Al2O3对乙酸乙酯的COx产率分别为61.5 %和59 %,比13X和γ-Al2O3相应高出36.3 %和29 %。图3(b)表明,负载MnOx之后,CO2选择性也提高了1.8 %和1.5 %,因为MnOx对O3有着极强的分解能力,O3分解生成的O活性物种进一步将CO氧化为CO2[18]。以上结果表明,MnOx的负载有效促进了乙酸乙酯的深度降解,为探究其原因,采用BET和SEM对催化剂进行表征。图4为催化剂的N2吸附-解吸等温线,可以看出,13X的吸附等温线属于典型的I型等温线,说明其主要以微孔吸附为主,在较低压力下,吸附量急剧增加,发生微孔填充。而γ-Al2O3属于Ⅳ型吸附曲线,在较高压力区,吸附质发生毛细管凝聚,可观察到滞后现象,这种现象与孔的形状及大小有关。催化剂的物理化学性质如表1所示。负载MnOx后,一方面使催化剂的孔容减少、平均孔径增大,导致比表面积减小[19-20],不利于乙酸乙酯的等离子体氧化;另一方面,MnOx的负载增加了催化反应活性中心,可大大提高乙酸乙酯氧化。由于促进作用远大于比表面积减少带来的不利影响,负载MnOx后,乙酸乙酯的降解效果显著提高。图5为不同催化剂的SEM扫描电镜图。13X表面粗糙,孔隙多,而γ-Al2O3表面呈块状结构,孔隙少。负载MnOx后,催化剂表面变得平整,还会出现少量裂缝和大孔,说明MnOx的负载造成了一定的刻蚀,扩充了孔径,这与BET所测的负载后平均孔径变大的结果相吻合。

    图 3  催化剂的COx浓度和CO2选择性
    Figure 3.  COx concentration and CO2 selectivity of catalysts
    图 4  催化剂的N2吸附-脱附等温线
    Figure 4.  N2 adsorption-desorption isotherms of catalysts
    表 1  催化剂的物理化学性质
    Table 1.  Physicochemical properties of catalysts
    催化剂BET比表面积/(m2·g−1)孔容/(cm3·g−1)平均孔径/nmMn4+/ Mn3+Olatt/Oads
    13X6100.392.55
    MnOx/13X3030.212.791.001.07
    γ-Al2O33200.506.18
    MnOx/γ-Al2O31840.398.430.820.56
     | Show Table
    DownLoad: CSV
    图 5  催化剂的SEM扫描电镜图
    Figure 5.  SEM images of catalysts

    填充γ-Al2O3的COx产率比13X高出13%左右(图3(a)),这可能是由于γ-Al2O3介电常数比13X高[21-22],在相同的外加电压条件下,增强了电场强度,相应提高了电场中高能电子的数量,产生更多的活性粒子[23],将吸附态乙酸乙酯氧化降解成为CO2和CO。但值得注意的是,尽管MnOx/γ-Al2O3的介电常数比MnOx/13X的高,MnOx/13X的COx产率却比MnOx/γ-Al2O3高,这说明除了材料的介电常数,还有其他重要因素影响着低温等离子体催化降解吸附态乙酸乙酯。由表1可以看出,MnOx/13X的比表面积大于MnOx/γ-Al2O3的比表面积,有更多的活性位点,同时污染物的停留时间更长,有利于乙酸乙酯的氧化降解,这可能是MnOx/13X的COx产率比MnOx/γ-Al2O3高的原因之一。另外,在图6(a)图6(b)中,Mn 2P的XPS谱图显示,MnOx/13X上的Mn4+(结合能在(642.7±0.5) eV的拟合峰)含量比MnOx/γ-Al2O3高(表1),而较高的Mn4+含量有利于有机物的氧化。MnOx/13X和MnOx/γ-Al2O3的O1s(图6(c)图6(d))的XPS谱图显示,MnOx/13X上的晶格氧Olatt(结合能在(530.5±0.5) eV)含量也远高于MnOx/γ-Al2O3(表1),而晶格氧含量越高,越有利于有机物的催化氧化[24-25]。以上结果表明,填充材料的介电性质、比表面积、Mn4+的含量以及晶格氧的含量均对吸附态乙酸乙酯的氧化均起着非常重要的作用。

    图 6  催化剂的XPS谱图
    Figure 6.  XPS spectra of catalysts

    2) 副产物O3和N2O。从图7(a)中可以看出,O3浓度随放电时间的延长在不断上升,这是因为随着放电时间的推移,有机中间产物的累积覆盖了活性位点,抑制了O3在催化剂表面的分解[26]。填充负载型催化剂MnOx/13X和MnOx/γ-Al2O3的反应器出口的O3浓度大大降低,这是由于MnOx的负载有助于对O3的分解[27-28],如式(3)~式(5)所示,减少副产物的同时形成了高活性O·,从而促进了污染物的降解。

    图 7  O3和N2O浓度随放电时间的变化
    Figure 7.  Change of O3 and N2O concentration with discharge time
    O3+催化剂活性位O2+O (3)
    O+O3O2+O2 (4)
    O2O2+催化剂活性位 (5)

    此外,MnOx的负载略微增加了催化剂的平均孔径(表1),使得O3的扩散阻力减弱,臭氧更容易迁移到催化剂孔道内参与反应[29]图7(b)显示,无论负载MnOx与否,γ-Al2O3作为催化剂时产生的N2O浓度均高于13X,这是由于γ-Al2O3的介电常数大,填充后反应器内放电场强增加,产生更多高能电子,与N2碰撞,使其处于不稳定的激发态N2(A),进一步被氧化为N2O[30],见式(6)和式(7)。

    e+N2e+N2(A) (6)
    N2(A)+O2N2O+O (7)

    MnOx的负载对N2O的产生影响不大,说明MnOx的负载对材料的介电形式和放电影响不大,对产生的N2O几乎没有分解能力。

    在实验中,吸附态乙酸乙酯的降解路径主要分为2个部分,1)等离子体在空气气氛下的放电过程中会产生羟基自由基、O·、O2、电子和N2(A)等多种活性粒子,直接与乙酸乙酯发生碰撞;2)催化剂表面的活性组分MnOx分解O3,形成的活性基团或MnOx直接与乙酸乙酯生成CH3·、CH3CO·、CH3COO·、CH3CH2COO·[31],从而进一步氧化成乙酸、乙醛等中间产物[32],然后再矿化为COx和H2O。反应过程如图8所示。

    图 8  乙酸乙酯的反应路径
    Figure 8.  Reaction pathway of ethyl acetate

    总反应方程式可简化为式(8)的形式。

    C4H8O2+活性粒子CO2+CO+H2O (8)

    假设在一定运行条件下,活性粒子的浓度视为恒定,则吸附态乙酸乙酯的瞬时矿化速率方程见式(9)。

    dn/dt=knb (9)

    式中:t为反应时间,min;k为总反应速率常数;b为反应级数;n为乙酸乙酯的吸附量,mmol;n在放电过程中无法直接测定,故采用矿化产物COx(CO2和CO)的量来间接计算,如式(10)所示。

    n=n0(nCO2+nCO)/4 (10)

    拟合结果如图9所示,不同催化剂(13X、γ-Al2O3、MnOx/13X、MnOx/γ-Al2O3)矿化吸附态乙酸乙酯的过程均符合二级动力学模型(b=2,可决系数都在0.99以上,如表2所示),说明矿化速率与乙酸乙酯吸附量的平方成正比。但不同催化剂的反应速率常数k不同,由表2可知,MnOx/13X的总反应速率最大。另外值得注意的是,催化剂总反应速率常数k的大小顺序(表2)与COx产率的大小顺序一致(图3(a))。

    图 9  催化剂的二级动力学模型
    Figure 9.  Pseudo-second-order model of catalysts
    表 2  催化剂的二级动力学参数
    Table 2.  Pseudo-second-order kinetic model parameters of catalysts
    催化剂kR2
    13X0.007 610.994
    γ-Al2O30.014 540.992
    MnOx/13X0.036 80.997
    MnOx/γ-Al2O30.032 80.991
     | Show Table
    DownLoad: CSV

    1)相比于13X和γ-Al2O3,MnOx/13X、MnOx/γ-Al2O3将COx产率分别提高了36.3 %和29 %,同时CO2选择性相应上升到98.9 %和98.1 %。从表征结果看出,COx产率和CO2选择性的提高主要是由于MnOx的负载增加了等离子体催化反应的活性中心数量。

    2) MnOx与13X协同效果更佳,XPS的表征显示MnOx/13X上的Mn4+和晶格氧含量更高,更有利于乙酸乙酯的降解。

    3) MnOx的负载可以有效降低O3,但对N2O的产生并无显著影响。

    4) DBD降解吸附态乙酸乙酯符合二级反应动力学模型,不同催化剂的总反应速率常数k与COx产率大小顺序一致,产率大小顺序为MnOx/13X>MnOx/γ-Al2O3>γ-Al2O3>13X。

  • 图 1  CSTR系统示意图

    Figure 1.  Schematic diagram of CSTR system

    图 2  污水处理厂工艺流程

    Figure 2.  Schematic diagram of CSTR system

    图 3  HRT对LaFe-DWTR吸附PO43--P效果的影响

    Figure 3.  Effect of HRT on phosphorus removal efficiency

    图 4  投加量对LaFe-DWTR吸附PO43−-P效果的影响

    Figure 4.  Effect of LaFe-DWTR dosage on phosphorus removal efficiency

    图 5  水力学条件对LaFe-DWTR吸附PO43−-P效果的影响

    Figure 5.  Effect of hydraulic conditions on phosphorus removal efficiency

    图 6  CSTR处理城市污水处理厂二沉池出水的吸附除磷效果

    Figure 6.  Phosphorus removal effect for the secondary effluent of municipal WWTP with CSTR

    表 1  CSTR系统运行参数

    Table 1.  Operational parameters of CSTR system

    控制变量进水PO43−-P浓度/(mg·L−1)LaFe-DWTR投加量/(g·L−1)HRT/h水力学条件运行时长/h
    HRT50.0021/2/3无搅拌220
    投加量50.001/2/33无搅拌220
    水力学条件50.0023无/有搅拌220
    控制变量进水PO43−-P浓度/(mg·L−1)LaFe-DWTR投加量/(g·L−1)HRT/h水力学条件运行时长/h
    HRT50.0021/2/3无搅拌220
    投加量50.001/2/33无搅拌220
    水力学条件50.0023无/有搅拌220
    下载: 导出CSV

    表 2  动态条件下LaFe-DWTR与其他吸附剂对PO43--P吸附性能的比较

    Table 2.  Comparison of phosphate adsorption capacities onto LaFe-DWTR with other adsorbents under dynamic conditions

    吸附材料CSTR反应区体积/L初始PO43−-P质量浓度/(mg·L−1)HRT/h材料投加量/(g·L−1)磷吸附量/(mg·g−1)磷去除率/%参考文献
    海草纤维(POF)1.2500.553.0380[28]
    磷矿废石(PMS)1.2500.555.6381[25]
    大理石粉末(PMW)1.21008.81217.088.3[27]
    羟基磷灰石(HAP)72.9252.4[30]
    给水厂污泥(DWTR)1.0102100.9595[24]
    粉煤灰/钢渣复合材料(PSPRC)3750.531084[31]
    酸矿排水污泥(AMD)2.01.8111.7999.3[5]
    LaFe-DWTR1.85503224.8299本研究
    吸附材料CSTR反应区体积/L初始PO43−-P质量浓度/(mg·L−1)HRT/h材料投加量/(g·L−1)磷吸附量/(mg·g−1)磷去除率/%参考文献
    海草纤维(POF)1.2500.553.0380[28]
    磷矿废石(PMS)1.2500.555.6381[25]
    大理石粉末(PMW)1.21008.81217.088.3[27]
    羟基磷灰石(HAP)72.9252.4[30]
    给水厂污泥(DWTR)1.0102100.9595[24]
    粉煤灰/钢渣复合材料(PSPRC)3750.531084[31]
    酸矿排水污泥(AMD)2.01.8111.7999.3[5]
    LaFe-DWTR1.85503224.8299本研究
    下载: 导出CSV
  • [1] CORDELL D, ROSEMARIN A, SCHRODER J J, et al. Towards global phosphorus security: A systems framework for phosphorus recovery and reuse options[J]. Chemosphere, 2011, 84(6): 747-758. doi: 10.1016/j.chemosphere.2011.02.032
    [2] CORDELL D, DRANDERT J O, WHITE S. The story of phosphorus: Global food security and food for thought[J]. Global Environmental Change, 2009, 19(2): 292-305. doi: 10.1016/j.gloenvcha.2008.10.009
    [3] SHEN C, ZHAO Y Q, LIU R B, et al. Enhancing wastewater remediation by drinking water treatment residual-augmented floating treatment wetlands[J]. Science of the Total Environment, 2019, 673(10): 230-236.
    [4] AYELE H S, ATLABACHEW, Review of characterization, factors, impacts, and solutions of lake eutrophication: Lesson for lake Tana, Ethiopia[J]. Environmental Science and Pollution Research, 2021, 28(12): 14233-14252.
    [5] WEI X C, JRR C V, BHOJAPPA S. Phosphorus removal by acid mine drainage sludge from secondary effluents of municipal wastewater treatment plants[J]. Water Research, 2008, 42(13): 3275-3284. doi: 10.1016/j.watres.2008.04.005
    [6] WANG Q P, LIAO Z Y, YAO D X, et al. Phosphorus immobilization in water and sediment using iron-based materials: A review[J]. Science of the Total Environment, 2020: 767.
    [7] YE Y Y, NGO H H, GUO W S, et al. Insight into chemical phosphate recovery from municipal wastewater[J]. Science of the Total Environment, 2017, 576: 159-171. doi: 10.1016/j.scitotenv.2016.10.078
    [8] RECEPOGLU Y K, GOREN A Y, OROOJI Y, et al. Carbonaceous materials for removal and recovery of phosphate species: Limitations, successes and future improvement[J]. Chemosphere, 2022, 287(2): 132177.
    [9] PERERA M K, ENGLEHARDT J D, DVORAK A C. Technologies for Recovering Nutrients from Wastewater: A Critical Review[J]. Environmental Engineering Science, 2019, 36(5): 511-529. doi: 10.1089/ees.2018.0436
    [10] 徐颖, 叶志隆, 叶欣, 等. 给水污泥对水中磷的吸附性能. 环境工程学报[J]. 2018, 12(3): 712-719.
    [11] BHATNAGAR A, SILLANPAA M. A review of emerging adsorbents for nitrate removal from water[J]. Chemical Engineering Journal, 2011, 168(2): 493-504. doi: 10.1016/j.cej.2011.01.103
    [12] ZHOU Y Q, WANG Y L, DONG S X, et al. Phosphate removal by a La(OH)3 loaded magnetic MAPTAC-based cationic hydrogel: Enhanced surface charge density and Donnan membrane effect[J]. Journal of Environmental Sciences, 2022, 113: 26-39. doi: 10.1016/j.jes.2021.05.041
    [13] 高欢, 韦安磊, 郑晓青, 等. 乙酰化小麦秸秆吸附水中六价铬[J]. 环境工程学报, 2016, 10(9): 4753-4760. doi: 10.12030/j.cjee.201601205
    [14] YANG Y, ZHAO Y. Q, KEARNEY P. Influence of ageing on the structure and phosphate adsorption capacity of dewatered alum sludge[J]. Chemical Engineering Journal, 2008, 145(2): 276-284. doi: 10.1016/j.cej.2008.04.026
    [15] TAHMAZI T A, BABATUNDE A O. Mechanistic study of P retention by dewatered waterworks sludges[J]. Environmental Technology and Innovation, 2016, 6: 38-48. doi: 10.1016/j.eti.2016.05.002
    [16] YANG Y, ZHAO Y Q, BABATUNDE A O, et al. Characteristics and mechanisms of phosphate adsorption on dewatered alum sludge[J]. Separation and Purification Technology, 2006, 51(2): 193-200. doi: 10.1016/j.seppur.2006.01.013
    [17] ZHAO X H, ZHAO Y Q, WANG W K, et al. Key issues to consider when using alum sludge as substrate in constructed wetland[J]. Water Science and Technology, 2015, 71(12): 1775-1782. doi: 10.2166/wst.2015.138
    [18] XU H, DING M M, SHEN K L, et al. Removal of aluminum from drinking water treatment sludge using vacuum electrokinetic technology[J]. Chemosphere, 2017, 173: 404-410. doi: 10.1016/j.chemosphere.2017.01.057
    [19] KEELEY J, SMITH A D, JUDD S J, et al. Acidified and ultrafiltered recovered coagulants from water treatment works sludge for removal of phosphorus from wastewater[J]. Water Research, 2016, 88: 380-388. doi: 10.1016/j.watres.2015.10.039
    [20] LI X Q, CUI J, PEI Y S. Granulation of drinking water treatment residuals as applicable media for phosphorus removal[J]. Journal of Environmental Management, 2018, 213: 36-46.
    [21] WANG C H, WU Y, WANG Y Q, et al. Lanthanum-modified drinking water treatment residue for initial rapid and long-term equilibrium phosphorus immobilization to control eutrophication[J]. Water Research, 2018: 173-183.
    [22] YU J, XIANG C, ZHANG G, et al. Activation of lattice oxygen in LaFe(Oxy)hydroxides for efficient phosphorus removal[J]. Environmental Science and Technology, 2019, 53(15): 9073-9080. doi: 10.1021/acs.est.9b01939
    [23] BABATUNDE A O, ZHAO Y. Q, DOYLE R. J, et al. Performance evaluation and prediction for a pilot two-stage on-site constructed wetland system employing dewatered alum sludge as main substrate[J]. Bioresource Technology, 2011, 102(10): 5645-5652. doi: 10.1016/j.biortech.2011.02.065
    [24] BAI L L, WANG C H, PEI Y S, et al. Reuse of drinking water treatment residuals in a continuous stirred tank reactor for phosphate removal from urban wastewater[J]. Environmental Technology, 2014, 35(21-24): 2752-2759.
    [25] JELLALI S, WAHAB M A, ANANE M, et al. Phosphate mine wastes reuse for phosphorus removal from aqueous solutions under dynamic conditions[J]. Journal of Hazardous Materials, 2010, 184(1/2/3): 226-233.
    [26] HAO H T, WANG Y L, SHI B Y. NaLa(CO3)2 hybridized with Fe3O4 for efficient phosphate removal: Synthesis and adsorption mechanistic study[J]. Water Research, 2019, 155: 1-11. doi: 10.1016/j.watres.2019.01.049
    [27] JAOUADI S, WAHAB M A, ANANE M, et al. Powdered marble wastes reuse as a low-cost material for phosphorus removal from aqueous solutions under dynamic conditions[J]. Desalination and Water Treatment, 2014, 52(7/8/9): 1705-1715.
    [28] WAHAB M A, HASSINE R B, ELLALI S. Removal of phosphorus from aqueous solution by Posidonia oceanica fibers using continuous stirring tank reactor[J]. Journal of Hazardous Materials, 2011, 189(1/2): 577-585.
    [29] 王君, 王瑶, 黄星, 等. 基于流态化作用的吸附反应动力学和穿透特征[J]. 环境科学, 2014, 35(2): 678-683.
    [30] KIM E H, YIM S B, JUNG H C, et al. Hydroxyapatite crystallization from a highly concentrated phosphate solution using powdered converter slag as a seed material[J]. Journal of Hazardous Materials, 2006, 136(3): 690-697. doi: 10.1016/j.jhazmat.2005.12.051
    [31] LIU Y, ZHANG L M, SINGH R P. Enhanced phosphorus removal from wastewater using RSPRC and a novel reactor[J]. Applied Sciences, 2020, 10(10).
  • 加载中
图( 6) 表( 2)
计量
  • 文章访问数:  3090
  • HTML全文浏览数:  3090
  • PDF下载数:  88
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-12-09
  • 录用日期:  2022-03-30
  • 刊出日期:  2022-05-10
刘文芬, 王毅力, 刘晨阳, 李小林, 仝瑶, 周妍卿. 镧铁负载给水厂污泥复合材料在完全混合式反应器中的动态吸附除磷特征[J]. 环境工程学报, 2022, 16(5): 1451-1458. doi: 10.12030/j.cjee.202112060
引用本文: 刘文芬, 王毅力, 刘晨阳, 李小林, 仝瑶, 周妍卿. 镧铁负载给水厂污泥复合材料在完全混合式反应器中的动态吸附除磷特征[J]. 环境工程学报, 2022, 16(5): 1451-1458. doi: 10.12030/j.cjee.202112060
LIU Wenfen, WANG Yili, LIU Chenyang, LI Xiaolin, TONG Yao, ZHOU Yanqing. Dynamic phosphorus removal from aqueous solutions by lanthanum/iron-loaded drinking water treatment residues in a continuous stirred tank reactor[J]. Chinese Journal of Environmental Engineering, 2022, 16(5): 1451-1458. doi: 10.12030/j.cjee.202112060
Citation: LIU Wenfen, WANG Yili, LIU Chenyang, LI Xiaolin, TONG Yao, ZHOU Yanqing. Dynamic phosphorus removal from aqueous solutions by lanthanum/iron-loaded drinking water treatment residues in a continuous stirred tank reactor[J]. Chinese Journal of Environmental Engineering, 2022, 16(5): 1451-1458. doi: 10.12030/j.cjee.202112060

镧铁负载给水厂污泥复合材料在完全混合式反应器中的动态吸附除磷特征

    通讯作者: 王毅力(1972—),男,博士,教授,wangyilimail@126.com
    作者简介: 刘文芬(1993—),女,硕士研究生,liuwenfen99@126.om
  • 1. 北京林业大学环境科学与工程学院,水体污染源控制技术北京市重点实验室,北京 100083
  • 2. 中国恩菲工程技术有限公司,北京 100083
基金项目:
北京市科技计划课题项目(Z181100005518007);国家重点研发计划项目(2017YFC0505303)

摘要: 采用共沉淀法制备出一种镧铁负载给水厂污泥复合材料(LaFe-DWTR),研究其在完全混合式反应器(CSTR)中对模拟废水和城市污水处理厂二沉池出水的除磷效果以及水力停留时间(HRT)、LaFe-DWTR投加量和水力学条件的影响。结果表明,当CSTR进水PO43−-P质量浓度为50 mg·L−1,HRT为3 h,LaFe-DWTR投加量为2 g·L−1,反应区采用搅拌时,LaFe-DWTR对PO43--P的去除率稳定在99%以上,吸附量可达24.82 mg·g−1。对于CSTR进水初始PO43−-P质量浓度为2 mg·L−1的城市污水处理厂二沉池出水,在3 h HRT,0.14 g·L−1投加量时,CSTR出水的PO43−-P质量浓度稳定在0.2 mg·L−1左右,已达到《城市污水处理厂污染物排放标准》(GB 18918–2002)一级A标准的要求。

English Abstract

  • 磷是生物生长的重要营养元素,也是农业肥料中不可替代的养分[1]。然而,磷作为不可再生资源,预计将在2035年达到磷产量峰值后面临供不应求的风险,影响着全球粮食供应[2]。另一方面,工业、农业和生活废水中过量排入水体的磷不仅未能有效回收,反而导致水中藻类等水生生物过度生长,引起水体富营养化,造成水体水质恶化等严重问题[3-4]。因此,如何实现磷的去除与资源回收成为水处理行业的研究重点。常用的除磷技术有化学沉淀法、生物法、吸附法等[5]。其中,化学沉淀法一般是利用铝盐、铁盐和钙盐等化学药剂形成不溶性磷酸盐沉淀,并通过固液分离除磷的传统技术[6]。该方法操作简单、占地面积小、除磷效率高,但生成的化学污泥产量大且成分复杂,导致磷资源回收困难,污泥处置成本增加,还可能造成二次污染[6-8]。生物法是利用聚磷菌在厌氧和好氧交替的条件下过量吸收磷,并通过排泥除磷的方法[9]。生物除磷无需添加化学药剂,产生的污泥可直接用作肥料,具有磷资源回收的潜力,但对环境条件要求高,除磷后的出水稳定性较差,工艺运行成本高[8-10]。相比之下,吸附法因操作简单、效率高、能耗低、无二次污染、磷资源可回收等优点而受到广泛关注[11]。目前用于水体除磷的吸附材料主要有生物炭、双层氢氧化物、水凝胶等[12],但生物炭吸附量低,双层氢氧化物、水凝胶等材料成本较高,因此,寻求高效低成本的吸附材料成为废水除磷的关键[13]

    给水厂污泥(drinking water treatment residues,DWTR)是饮用水生产过程中相对清洁安全的副产品,对PO43−-P具有选择性吸附,被认为是一种有前景的廉价除磷材料[14]。DWTR主要含有铝、铁等元素,并以无定型的非晶形态存在,具有较大的比表面积和孔隙率,能够通过表面官能团与PO43−-P发生配体交换吸附水中的磷,可以作为人工湿地的除磷填料[14-17]。另外,提高DWTR吸附性能的改性技术也受到研究者的关注[18-20]。譬如,镧的负载可以显著提高DWTR对PO43−-P的吸附量[21],但镧属于稀土金属,价格较高;铁是一种来源广泛、价格相对较低的金属,其对PO43−-P的吸附能力较弱[22]

    为了发挥镧和铁的协同作用,本研究采用共沉淀法制备出一种镧铁复合给水厂污泥吸附材料(LaFe-DWTR)。目前,DWTR的除磷研究一般采用静态吸附和固定床吸附模式进行,采用完全混合式反应器(continuous stirred tank reactor,CSTR)的研究相对较少[23-24]。由于CSTR可以提供充足的反应空间和运行时间,能够实现较高的传质速率和连续稳定运行[25],因此,本研究采用自主设计的CSTR实验装置,研究了LaFe-DWTR在CSTR中对模拟废水和城市污水处理厂二沉池出水的除磷效果,探讨了停留时间(hydraulic retention time,HRT)、LaFe-DWTR投加量和水力学条件对CSTR运行效果的影响,以期为LaFe-DWTR应用于水体富营养化控制提供参考。

    • 实验所用给水厂污泥取自北京市第九水厂。将自然风干后的DWTR于105℃烘箱干燥24 h,研磨过120目筛保存。称取一定质量的水合氯化镧和氯化铁于250 mL去离子水,然后加入5 g DWTR搅拌均匀,并缓慢滴加3.0 mol·L−1 NaOH溶液,待pH稳定至11后停止。采用500 r·min−1转速连续搅拌5 h,再静置24 h后,倾去上清液,用去离子水洗涤沉淀至中性,于105 ℃干燥12 h,研磨过120目筛得到LaFe-DWTR。其理化性质采用X射线能谱仪(EDS)、粒度测定仪、比表面积分析仪(BET)等表征确定,LaFe-DWTR主要由镧和铁组成(27.79%La、15.03%Fe、4.24%Al、3.95%Si、3.55%Mg、16.12%C、19.28%O),平均粒径为22.70 μm,比表面积为98.57 m2·g−1,孔径为6.00 nm,孔体积为0.17 cm3·g−1,镧和铁的质量浓度分别为175.10 mg·g−1和107.60 mg·g−1

    • 1) CSTR系统的搭建与运行。以CSTR为主体的动态系统如图1所示,包括进水池、加药池、CSTR和再生罐4个部分。其中,进水池和加药池分别与CSTR底部的进水口和加药口相连,再生罐与CSTR的材料回收口和再生回流口相连。CSTR结构包括反应区和沉淀区2部分,总有效容积为19.27 L;中心的圆柱形反应槽是反应区,容积为1.85 L;圆柱形反应槽与反应器主体外壳之间是沉淀区,容积为17.42 L。沉淀区中间设置导流板以增强沉淀效果。

      采用蠕动泵控制CSTR系统的运行。运行过程中,材料回收管和再生材料回流管的阀门处于关闭状态,含磷废水从进水池流入CSTR反应区,加药池内搅拌均匀的LaFe-DWTR悬浊液同步流入CSTR反应区,含磷废水和LaFe-DWTR在反应区内充分接触,待混合溶液充满反应区后溢流到沉淀区,混合液在导流板的作用下往下流,此时LaFe-DWTR在沉淀区底部富集,上清液继续向上流动,待整个反应器充满后从出水孔流出。运行一段时间后,部分吸附PO43−-P后的LaFe-DWTR通过材料回收口输送至再生罐进行再生,回收量控制在CSTR中LaFe-DWTR总量的10%左右,再生后的LaFe-DWTR回流至CSTR反应区进行下1次吸附。

      2) CSTR系统运行条件的优化。配制PO43−-P质量浓度为100.00 mg·L−1的模拟废水于进水池中,并用去离子水配制一定质量浓度的LaFe-DWTR悬浊液于加药池中,加药池采用500 r·min−1的转速持续搅拌。将模拟废水和LaFe-DWTR悬浊液以相同的流速输送到CSTR反应器内,使CSTR的进水PO43−-P质量浓度稀释至50.00 mg·L−1。分别控制HRT、LaFe-DWTR投加量、水力学条件3个变量进行实验,优化CSTR系统的运行条件,具体运行参数见表1。每个实验连续运行220 h,每5 h测1次出水PO43−-P质量浓度。

      3) LaFe-DWTR处理城市污水处理厂二沉池出水的吸附除磷效果。为探究LaFe-DWTR对实际含磷污水的去除效果,选取北京市某再生水厂的二沉池出水作为CSTR的进水。该污水处理厂的工艺流程见图2。二沉池出水的水质参数如下:pH=7.90、4.00 mg·L−1 PO43−-P、19.07 mg·L−1 COD、13.44 mg·L−1 NO3、79.55 mg·L−1 Cl、132.36 mg·L−1 SO42−、78.00 mg·L−1 SiO32−、85.40 mg·L−1 HCO3、10.84 mg·L−1 K+、3.44 mg·L−1 Ca+、4.67 mg·L−1 Na+、16.69 mg·L−1 Mg+。由于所取的城市污水处理厂二沉池出水中PO43−-P含量较低,为模拟大多数污水处理厂生物除磷后的二沉池出水PO43−-P浓度,水样经过滤后,通过实验室添加磷酸二氢钾使CSTR进水PO43−-P浓度达到2.00 mg·L−1[26]。CSTR系统运行时,控制HRT为3 h,LaFe-DWTR投加量为0.14 g·L−1,反应区搅拌转速为150 r·min−1,连续运行220 h,探究LaFe-DWTR对实际城市污水处理厂出水的除磷效果。

    • 采用钼酸铵分光光度法测定PO43−-P质量浓度。根据水溶液中PO43−-P质量浓度差法计算吸附量。LaFe-DWTR对的PO43−-P吸附量根据式(1)进行计算。

      式中:Qt为在t时刻的PO43−-P吸附量,mg·g−1C0Ct分别为CSTR系统的PO43−-P进水质量浓度和t时刻的出水质量浓度,mg·L−1V为CSTR系统处理的水溶液体积,L;M为所使用的LaFe-DWTR质量,g。

      t时刻的PO43−-P去除率(R)根据式(2)进行计算。

    • 1)水力停留时间的影响。水力停留时间(HRT)对LaFe-DWTR吸附PO43−-P的影响如图3所示。当HRT由1 h增加到3 h时,平均出水PO43−-P质量浓度由15.13 mg·L−1降低到9.21 mg·L−1,平均去除率由69.97%增加到81.58%,吸附量由17.49 mg·g−1增加到20.44 mg·g−1。可见,HRT越长,出水PO43−-P质量浓度越低,去除率越高,LaFe-DWTR吸附效率越高。当HRT为1 h时,反应区的PO43−-P还未被充分吸附便溢流到沉淀区,因此,PO43−-P去除率低,LaFe-DWTR利用率低,出水效果差。而HRT在2 h和3 h时的除磷效果无明显差别,去除率均达到80%以上,吸附量仅相差0.04 mg·g−1。此现象与给水厂污泥(DWTR)和大理石粉末(PMW)在CSTR中吸附PO43−-P的趋势一致[24, 27]。结合静态吸附特征分析,LaFe-DWTR对PO43−-P的吸附动力学是快速吸附、缓慢趋于平衡的过程,快速吸附发生在LaFe-DWTR表面,慢速吸附发生在LaFe-DWTR颗粒内部,LaFe-DWTR在2 h内已经完成快速吸附,此后吸附逐渐趋于平衡。因此,CSTR的HRT大于2 h后,除磷效果提升变缓,这种现象与CSTR中海草纤维(POF)、磷矿废石(PMS)等吸附除磷的特征类似[25,28]。在本研究中,HRT为2 h和3 h的除磷效果接近,但HRT为3 h的LaFe-DWTR投加量(272 g)仅为2 h的67%,且沉淀时间(28.16 h)更长,出水水质更好。因此,在CSTR运行过程中选择HRT为3 h更合适。

      2) LaFe-DWTR投加量的影响。投加量对LaFe-DWTR吸附PO43−-P的影响如图4所示。随着投加量的增加,平均出水PO43−-P质量浓度随之降低,去除率相应增加。投加量对给水厂污泥(DWTR)与海草纤维(POF)吸附PO43−-P的影响也有相同的结论[24, 28]。当LaFe-DWTR投加量由1.0 g·L−1增加到2.0 g·L−1时, PO43−-P平均出水质量浓度由27.78 mg·L−1降至9.21 mg·L−1,平均去除率由44.45%升至81.58%,除磷效果明显增强。这是由于LaFe-DWTR投加量的增加可为PO43−-P提供更多的吸附位点,因此,2.0 g·L−1投加量的吸附效果优于1.0 g·L−1。当LaFe-DWTR投加量由2.0 g·L−1增加到3.0 g·L−1时,平均出水PO43−-P质量浓度由9.21 mg·L−1降低到4.40 mg·L−1,平均去除率由81.58%增至91.19%,除磷效果有所改善,但整个运行过程中投加的LaFe-DWTR总量由272 g增加到408 g,PO43−-P平均吸附量由20.44 mg·g−1降低到15.20 mg·g−1, LaFe-DWTR利用效率降低,出现了吸附位点未充分利用的现象。因此,综合考虑PO43−-P去除率和LaFe-DWTR利用效率,在进水PO43−-P质量浓度为50 mg·L−1时,选择2.0 g·L−1 LaFe-DWTR作为除磷的最佳投加量。

      3)水力学条件的影响。由图5可见,在CSTR反应区无搅拌时,平均出水PO43−-P质量浓度是9.21 mg·L−1,平均吸附量为20.44 mg·g−1,平均去除率为81.58%。当反应区采用搅拌方式改变水力条件后,CSTR的除磷效果显著提高,平均出水PO43−-P质量浓度降至0.37 mg·L−1,平均去除率稳定在99%以上,吸附量提高到24.82 mg·g−1。由此可见,在无搅拌时,吸附材料进入CSTR反应区后自然沉降,LaFe-DWTR分布不均匀,部分沉淀到反应区下层无法与PO43−-P充分接触;而通过搅拌改变水力条件后,LaFe-DWTR在悬浮状态下做无规则运动,与PO43−-P的接触面积增加,为PO43−-P提供了更多的吸附位点,强化了LaFe-DWTR对PO43−-P的吸附效果[29]。因此,采用搅拌改变反应区水力条件可以增强CSTR的除磷效果。

    • CSTR处理城市污水处理厂二沉池出水的吸附除磷效果如图6所示。运行初期,CSTR系统启动31 h后开始出水,此时出水PO43−-P质量浓度为0.24 mg·L−1,运行41 h后出水PO43−-P质量浓度降至0.21 mg·L−1;在41~127 h内,出水PO43−-P质量浓度稳定在0.20~0.22 mg·L−1;在132~220 h内,出水PO43−-P质量浓度降至0.20 mg·L−1以下,最低出水质量浓度可降至0.17 mg·L−1,最高去除率达到91.50%。这说明随着CSTR运行时间的延长,对二沉池出水的除磷效果逐渐变好。由于低质量浓度含磷污水所需的LaFe-DWTR投加量较少,反应区的LaFe-DWTR与PO43−-P接触更充分,出水稳定性增强;同时,随着CSTR运行时间的延长,在沉淀区底部积累的LaFe-DWTR对反应区溢流的混合液可以进一步净化,出水逐渐变好的趋势能够明显观察到。在整个运行周期内,LaFe-DWTR对PO43−-P的平均吸附量为12.86 mg·g−1,平均去除率为90.02%,CSTR平均出水PO43−-P质量浓度为0.20 mg·L−1,达到了《城市污水处理厂污染物排放标准》(GB 18918–2002)一级A标准的限值(0.5 mg·L−1)。

    • LaFe-DWTR和其他天然材料或工业副产品在动态条件下吸附PO43−-P的效果见表2。对比后可发现,当初始PO43−-P质量浓度不低于50 mg·L−1时,LaFe-DWTR投加量仅为2 g·L−1,远低于海草纤维(POF)、磷矿废石(PMS)、大理石粉末(PMW)等吸附材料的投加量,LaFe-DWTR对PO43−-P的吸附量和去除率均优于其他材料;当初始PO43−-P质量浓度低于10 mg·L−1时,LaFe-DWTR投加量(0.14 g·L−1)同样低于给水厂污泥(DWTR)和酸矿排水污泥(AMD)等吸附材料,表现出明显的优势。因此,LaFe-DWTR是一种较有前途的除磷材料。

    • 1)CSTR可以实现对LaFe-DWTR吸附除磷的稳定运行。对于含有50 mg·L−1 PO43−-P的模拟废水,在HRT为3 h、LaFe-DWTR投加量为2 g·L−1和反应搅拌的条件下,PO43−-P的去除率稳定在99%以上,LaFe-DWTR对PO43−-P吸附量可达24.82 mg·g−1

      2)对于PO43−-P初始质量浓度为2 mg·L−1的城市污水处理厂二沉池出水,在CSTR中采用LaFe-DWTR动态吸附除磷,平均出水PO43−-P质量浓度可降至0.20 mg·L−1

    参考文献 (31)

返回顶部

目录

/

返回文章
返回