-
可挥发性有机化合物(volatile organic compounds, VOCs)是大气污染物中一大类[1-3]。浓度较高的VOCs气体会刺激人的眼睛、鼻子或咽喉等,导致干咳头晕、恶心疲劳等症状。长期生活在受VOCs污染的环境中,人体的神经系统会被损害,并诱发癌症,故VOCs的治理刻不容缓[4-6]。
传统VOCs处理技术主要有燃烧法、催化氧化法、吸收吸附法等。其中,燃烧法的操作较为简单,但因危险性较高,故对安全防护的要求较高;催化氧化法不需要额外试剂,且产生污染物较少,但同时存在催化剂稳定性和寿命等限制[7-8];吸收法可将VOCs回收再利用,但需根据待处理VOCs种类使用特定吸收剂,普适性较差;吸附法常用活性炭作为吸附剂,净化率高,但活性炭使用寿命很短,需频繁更换。
低温等离子体(non-thermal plasma, NTP)技术是一种新型VOCs处理技术,相较于传统VOCs处理技术,具有适用性广、响应快速等特点,因而受到广泛关注[9-11]。在众多产生NTP的放电形式中,介质阻挡放电(dielectric barrier discharge, DBD)因其结构简单、可通过改变放电参数调控等离子体能量密度,且能处理较大流量气体等优势而被广泛研究。王保伟等[12]通过研究放电间距对单介质阻挡放电(single dielectric barrier discharge, SDBD) 等离子体降解甲苯的影响,发现随放电间距的增大,甲苯转化率和CO2选择性呈先增后降趋势。ZHAO等[13]使用双介质阻挡放电(double dielectric barrier discharge, DDBD)等离子体降解多种芳烃、烷烃、酮和酯类VOCs,发现电离能是影响所有VOCs降解效率的重要参数,电离能越大,降解效率越低。相较于SDBD放电腔,DDBD放电腔可很好地保护放电电极不受工作气体污染。
为进一步优化NTP技术,提升VOCs转化率,并降低NTP降解VOCs过程中产生的臭氧与有机副产物产量,催化剂协同技术被越来越多应用于NTP降解VOCs的体系中[10-11, 14-17]。在众多研究中,对催化剂性能的表征大多使用单种VOCs进行。然而,实际情况下待处理的VOCs组分复杂,催化剂在多组分VOCs的处理中的表现还鲜有报道。
本研究拟使用双介质阻挡放电(DDBD)反应器产生低温等离子体,以甲苯、丙酮及乙酸乙酯的混合气体作为待降解模拟VOCs混合废气[18-19],并制备常用于协同NTP降解VOCs的Mn2O3/γ-Al2O3催化剂,以研究NTP降解复杂成分VOCs的特性,以及催化剂对NTP降解混合VOCs的影响,以期为NTP降解VOCs的实际应用提供参考。
催化剂协同介质阻挡放电等离子体对不同VOCs的催化选择性
Catalytic selectivity of catalyst in the degradation of mixed VOCs by dielectric barrier discharge plasma
-
摘要: 为考察混合气体中各组分对VOCs降解的影响,以及催化剂在协同低温等离子体降解多组分VOCs气体中的表现,选取甲苯、丙酮及乙酸乙酯组成混合VOCs进行低温等离子体降解,进而研究混合降解方式对混合VOCs气体各组分降解效果的影响。先制备了Mn2O3/γ-Al2O3催化剂,采用催化剂后置方式研究催化剂在协同低温等离子体降解多组分混合VOCs气体过程中的表现。结果表明:多组分混合VOCs降解时,甲苯和乙酸乙酯的降解率相较单独降解时都有所提升,当特定输入能量(SIE)为700 J∙L−1时,提升率分别为69.1%和12.64%,而丙酮的降解率相较单独降解时却发生了明显下降,下降了40.74%;多组分混合VOCs降解时的臭氧产量相较3种VOCs单独降解时均有微弱下降;多组分混合VOCs相较单种VOCs降解时的碳平衡均略有下降;在协同低温等离子体降解多组分VOCs气体过程中,Mn2O3/γ-Al2O3催化剂对混合VOCs中甲苯、乙酸乙酯及丙酮降解率有明显提升,且随VOCs降解难度的上升而更加明显,并使得各条件下VOCs降解的碳平衡均得到了提升。本研究结果可为低温等离子体降解VOCs的实际应用提供参考。Abstract: At present, there are few studies on the catalytic degradation of multi-component VOCs. The effect of gas component mixing on the degradation of each component is still unclear. The performance of the catalyst in the synergistic degradation of multi-component VOCs by non-thermal plasma also needs to be further studied. In this paper, the mixed VOCs composed of toluene, acetone and ethyl acetate were degraded by non-thermal plasma to investigate the degradation of each component in multi-component VOCs. Mn2O3/γ-Al2O3 catalyst was prepared, and the post catalyst method was applied to study the performance of the catalyst in the process of synergistic non-thermal plasma degradation of multi-component VOCs. The results showed that: 1) compared with single VOCs, the degradation rates of toluene and ethyl acetate in the degradation of mixed VOCs were higher than those in the degradation of pure toluene or ethyl acetate. When SIE was 700 J∙L−1, the enhancement rates were 69.1% and 12.64% respectively, while the degradation rate of acetone decreased significantly by 40.74%; 2) Compared with the degradation of three VOCs alone, the ozone production of mixed VOCs’ degradation decreased slightly; 3) Compared with single VOCs, the carbon balance of mixed VOCs’ degradation decreased slightly as well; 4) In the process of synergistic non-thermal plasma degradation of multi-component VOCs by Mn2O3/γ-Al2O3 catalyst, the improvement rate of degradation rate of toluene, ethyl acetate and acetone by catalyst in mixed VOCs increased with the increase of degradation difficulty of VOCs. The carbon balance of VOCs degradation under various conditions was improved by catalyst.
-
表 1 在SIE为700 J ∙ L−1时,各VOCs的降解率及其提升率
Table 1. Degradation rate and improvement rate of VOCs at SIE of 700 J ∙ L−1
指标 甲苯 乙酸乙酯 丙酮 单独 混合 单独 混合 单独 混合 无催化时的降解率 61% 84.7% 59.6% 67.1% 50.1% 31.1% 有催化时的降解率 72.6% 91.1% 70.2% 79.1% 58.4% 45.3% 提升率 19% 7.5% 17.9% 18% 16.7% 45.8% 表 2 O3分子的马利肯电荷
Table 2. Maliken charge of O3 molecule
原子种类 吸附前/e 吸附后/e O1 4.94 5.97 O2 4.94 6.09 O3 4.94 6.03 -
[1] 赵琼. 低温等离子体降解VOCs的DBD反应器优化探索和产物分析[D]. 上海: 东华大学, 2017. [2] 赵琳, 张英锋, 李荣焕, 等. VOC的危害及回收与处理技术[J]. 化学教育, 2015, 36(16): 1-6. [3] 冯发达. 反电晕等离子体发生方法及协同催化处理挥发性有机物的研究[D]. 杭州: 浙江大学, 2014. [4] ZHANG H B, LI K, SHU C H, et al. Enhancement of styrene removal using a novel double-tube dielectric barrier discharge (DDBD) reactor[J]. Chemical Engineering Journal, 2014, 256: 107-118. doi: 10.1016/j.cej.2014.06.105 [5] NA C J, YOO M J, TSANG D C W, et al. High-performance materials for effective sorptive removal of formaldehyde in air[J]. Journal of Hazardous Materials, 2018, 366: 452-465. [6] CHUNG W C, MEI D H, TU X, et al. Removal of VOCs from gas streams via plasma and catalysis[J]. Catalysis Reviews-Science And Engineering, 2019, 61(2): 270-331. doi: 10.1080/01614940.2018.1541814 [7] LU J C, HAO H S, ZHANG L M, et al. The investigation of the role of basic lanthanum (La) species on the improvement of catalytic activity and stability of HZSM-5 material for eliminating methanethiol- (CH3SH)[J]. Applied Catalysis B Environmental, 2018, 237: 185-197. doi: 10.1016/j.apcatb.2018.05.063 [8] LU J C, LIU J P, ZHAO Y T, et al. The identification of active chromium species to enhance catalytic behaviors of alumina-based catalysts for sulfur-containing VOC abatement[J]. Journal of Hazardous Materials, 2020, 384: 121289. doi: 10.1016/j.jhazmat.2019.121289 [9] 吴萧, 刘盛余, 何廷宇, 康岷慧, 等. 介质阻挡放电低温等离子体技术处理3种代表性VOC[J]. 环境工程学报, 2017, 11(10): 5502-5508. doi: 10.12030/j.cjee.201612064 [10] 秦彩虹, 党小庆, 黄家玉, 等. 气体循环条件下等离子体催化氧化吸附态的苯和甲苯[J]. 环境工程学报, 2017, 11(3): 1691-1697. doi: 10.12030/j.cjee.201512014 [11] 陈睿, 王升高, 崔丽佳, 等. FeMnOx和等离子体对苯的协同降解[J]. 真空与低温, 2016, 22(3): 173-176. doi: 10.3969/j.issn.1006-7086.2016.03.012 [12] 王保伟, 姚淑美, 彭叶平, 等. 介质阻挡放电等离子体降解高浓度甲苯[J]. 环境工程学报, 2018, 12(7): 1977-1985. doi: 10.12030/j.cjee.201801156 [13] ZHAO X L, LIU X, J LIU, et al. The effect of ionization energy and hydrogen weight fraction on the non-thermal plasma VOCs removal efficiency[J]. Journal of Physics D:Applied Physics, 2019, 52: 145201. doi: 10.1088/1361-6463/aafe8b [14] 郭玉芳, 叶代启, 陈克复. 挥发性有机化合物(VOCs)的低温等离子体-催化协同净化[J]. 工业催化, 2005(11): 4-8. [15] WU Z L, ZHOU W L, ZHU Z B, et al. Enhanced oxidation of xylene using plasma activation of an Mn/Al2O3 catalyst[J]. IEEE Transactions on Plasma Science, 2020, 48(1): 163-172. doi: 10.1109/TPS.2019.2959698 [16] ZHU X B, TU X, MEI D H, et al. Investigation of hybrid plasma-catalytic removal of acetone over CuO/γ-Al2O3 catalysts using response surface method[J]. Chemosphere, 2016, 155: 9-17. doi: 10.1016/j.chemosphere.2016.03.114 [17] ZHU X B, ZHANG S, YANG Y, et al. Enhanced performance for plasma-catalytic oxidation of ethyl acetate over La1-xCexCoO3+δ catalysts[J]. Applied Catalysis B-Environmental, 2017, 213: 97-105. doi: 10.1016/j.apcatb.2017.04.066 [18] LU W J, ABBAS Y, MUSTAFA M F, et al. A review on application of dielectric barrier discharge plasma technology on the abatement of volatile organic compounds[J]. Frontiers of Environmental Science & Engineering, 2019, 13(2): 30. [19] JIANG N, GUO L J, QIU C, et al. Reactive species distribution characteristics and toluene destruction in the three-electrode DBD reactor energized by different pulsed modes[J]. Chemical Engineering Journal, 2018, 350: 12-19. doi: 10.1016/j.cej.2018.05.154 [20] ZHAO J H, NING L, YU R X, et al. Magnetic field enhanced denitrification in nitrate and ammonia contaminated water under 3D/2D Mn2O3/γ-C3N4 photocatalysis[J]. Chemical Engineering Journal, 2018, 349: 530-538. doi: 10.1016/j.cej.2018.05.124 [21] ZHANG X D, LV X T, BI F K, et al. Highly efficient Mn2O3 catalysts derived from Mn-MOFs for toluene oxidation: The influence of MOFs precursors[J]. Molecular Catalysis, 2019, 482: 110701. [22] KARUPPIAH J, REDDY E L, REDDY P M K, et al. Abatement of mixture of volatile organic compounds (VOCs) in a catalytic non-thermal plasma reactor[J]. Journal of Hazardous Materials, 2012, 237: 283-289. [23] MA T P, ZHAO Q, LIU J Q, et al. Study of humidity effect on benzene decomposition by the dielectric barrier discharge nonthermal plasma reactor[J]. Plasma Science & Technology, 2016, 18(6): 686-692. [24] VANDENBROUCKE A M, MORENT R, DE GEYTER N, et al. Non-thermal plasma for non-catalytic and catalytic VOC abatement[J]. Journal of Hazardous Materials, 2011, 195: 30-45. doi: 10.1016/j.jhazmat.2011.08.060 [25] XIE S H, DENG J G, LIU Y X, et al. Excellent catalytic performance, thermal stability, and water resistance of 3DOM Mn2O3-supported Au-Pd alloy nanoparticles for the complete oxidation of toluene[J]. Applied Catalysis, A. General, 2015, 507: 82-90. doi: 10.1016/j.apcata.2015.09.026 [26] CHEN Y, LIAO Y F, CHEN L, et al. Performance of transition metal (Cu, Fe and Co) modified SCR catalysts for simultaneous removal of NO and volatile organic compounds (VOCs) from coal-fired power plant flue gas[J]. Fuel, 2021, 289: 119849. doi: 10.1016/j.fuel.2020.119849 [27] YU H, HU W, HE J, et al. Decomposition efficiency and aerosol by-products of toluene, ethyl acetate and acetone using dielectric barrier discharge technique[J]. Chemosphere, 2019, 237: 124439. doi: 10.1016/j.chemosphere.2019.124439 [28] CHEN J Y, LIU J Q, LIU X, et al. Decomposition of toluene with a combined plasma photolysis (CPP) reactor: influence of UV irradiation and byproduct analysis[J]. Plasma Chemistry And Plasma Processing, 2020, 41(1): 409-420. [29] Pan K L, Chang M B. Plasma catalytic oxidation of toluene over double perovskite-type oxide via packed-bed DBD[J]. Environmental Science and Pollution Research, 2019, 26(13): 12948-12962. doi: 10.1007/s11356-019-04714-0 [30] STANISLAV P, JAN M. Temperature-and airflow-related effects of ozone production by surface dielectric barrier discharge in air[J]. European Physical Journal D, 2014, 68(10): 310. doi: 10.1140/epjd/e2014-50393-x [31] BO Z, HAO H, YANG S L, et al. Vertically-oriented graphenes supported Mn3O4 as advanced catalysts in post plasma-catalysis for toluene decomposition[J]. Applied Surface Science, 2018, 436: 570-578. doi: 10.1016/j.apsusc.2017.12.081