催化剂协同介质阻挡放电等离子体对不同VOCs的催化选择性

刘鑫, 刘建奇, 陈佳尧, 钟方川. 催化剂协同介质阻挡放电等离子体对不同VOCs的催化选择性[J]. 环境工程学报, 2022, 16(6): 1862-1871. doi: 10.12030/j.cjee.202109019
引用本文: 刘鑫, 刘建奇, 陈佳尧, 钟方川. 催化剂协同介质阻挡放电等离子体对不同VOCs的催化选择性[J]. 环境工程学报, 2022, 16(6): 1862-1871. doi: 10.12030/j.cjee.202109019
LIU Xin, LIU Jianqi, CHEN Jiayao, ZHONG Fangchuan. Catalytic selectivity of catalyst in the degradation of mixed VOCs by dielectric barrier discharge plasma[J]. Chinese Journal of Environmental Engineering, 2022, 16(6): 1862-1871. doi: 10.12030/j.cjee.202109019
Citation: LIU Xin, LIU Jianqi, CHEN Jiayao, ZHONG Fangchuan. Catalytic selectivity of catalyst in the degradation of mixed VOCs by dielectric barrier discharge plasma[J]. Chinese Journal of Environmental Engineering, 2022, 16(6): 1862-1871. doi: 10.12030/j.cjee.202109019

催化剂协同介质阻挡放电等离子体对不同VOCs的催化选择性

    作者简介: 刘鑫(1990—),男,博士研究生,liuxin0724@126.com
    通讯作者: 钟方川(1966—),男,博士,研究员,fczhong@dhu.edu.cn
  • 基金项目:
    中央高校基本科研业务费专项资金(2232021G-10)
  • 中图分类号: X701

Catalytic selectivity of catalyst in the degradation of mixed VOCs by dielectric barrier discharge plasma

    Corresponding author: ZHONG Fangchuan, fczhong@dhu.edu.cn
  • 摘要: 为考察混合气体中各组分对VOCs降解的影响,以及催化剂在协同低温等离子体降解多组分VOCs气体中的表现,选取甲苯、丙酮及乙酸乙酯组成混合VOCs进行低温等离子体降解,进而研究混合降解方式对混合VOCs气体各组分降解效果的影响。先制备了Mn2O3/γ-Al2O3催化剂,采用催化剂后置方式研究催化剂在协同低温等离子体降解多组分混合VOCs气体过程中的表现。结果表明:多组分混合VOCs降解时,甲苯和乙酸乙酯的降解率相较单独降解时都有所提升,当特定输入能量(SIE)为700 J∙L−1时,提升率分别为69.1%和12.64%,而丙酮的降解率相较单独降解时却发生了明显下降,下降了40.74%;多组分混合VOCs降解时的臭氧产量相较3种VOCs单独降解时均有微弱下降;多组分混合VOCs相较单种VOCs降解时的碳平衡均略有下降;在协同低温等离子体降解多组分VOCs气体过程中,Mn2O3/γ-Al2O3催化剂对混合VOCs中甲苯、乙酸乙酯及丙酮降解率有明显提升,且随VOCs降解难度的上升而更加明显,并使得各条件下VOCs降解的碳平衡均得到了提升。本研究结果可为低温等离子体降解VOCs的实际应用提供参考。
  • 高级氧化工艺(advanced oxidation processes, AOPs)是一种先进的污水处理技术,相比于传统的生物技术,AOPs可将难降解、毒性有机污染物进行有效去除,在环境保护、水处理、废弃物处理等领域收到了广泛的关注[1]. AOPs是基于通过各种化学、光化学、声化学或电化学反应生成以羟基自由基(·OH)为主的活性氧物种来攻击有机污染物[24]使其氧化分解,并进一步完全矿化生成水、二氧化碳和无机盐,从而达到净化水体的目的[3, 5]. 近年来,AOPs领域的研究方向主要集中在以下几个方面[6]:1) AOPs新技术的研发;2) AOPs机理的探索;3) AOPs与生物、吸附和膜技术等的联用;4) AOPs的实际应用;5) AOPs效率和能耗等方面综合调控.

    由于AOPs技术复杂度较高,存在能源消耗、副产物产生等问题,因此降低能耗提升效率成为了AOPs研究的重点,而AOPs水体净化效率受到多种因素包括反应条件、废水性质、处理时间和工艺本身等的限制[78]. 研究人员通过改进反应器设计、使用新型催化剂和调节反应条件等手段,降低AOPs的能耗,提高处理效率和工程经济性[9]. 改进AOPs的反应条件对提高其处理效率有着重要的帮助. 前人主要研究了反应温度、反应时间、酸碱值 (pH)、催化剂用量和氧化剂用量等对体系的影响[10]. 随着AOPs机理研究的不断深入,人们注意到初始溶解氧条件与AOPs处理效率的关联机制,并推动领域朝着高选择性、可持续性和高效率性的方向发展[1112]. 溶解氧在体系中的影响机制是通过利用电子顺磁共振技术和化学竞争手段定性定量研究体系主要活性物种,并根据曝气实验、溶解氧梯度浓度实验掌握溶解氧对体系的宏观影响,再通过反应方程式、产物分析、氧化机制分析,以及对活性自由基浓度的监测综合得出. 近年来在不同种类的AOPs中有关溶解氧的研究主要集中在以下3个方面:1) 不同溶解氧浓度条件下污染物的降解及矿化效果;2) 溶解氧在氧化过程中导致的自由基浓度变化;3) 氧化过程中涉及溶解氧的反应机制.

    由此可见,溶解氧是AOPs体系中的一个重要参数,本文通过综述了溶解氧在光催化氧化、芬顿氧化、过硫酸盐氧化、臭氧氧化、声化学氧化和电化学氧化体系中对有机污染物降解速率、反应产物,以及自由基反应路径的动力学分析以及体系反应能耗的热力学影响(图1),相关研究有助于深刻认知AOPs应用过程溶解氧的影响机制,进一步推进AOPs应用于高效处理水中有机污染物.

    图 1  AOPs中溶解氧调控的作用:提高体系稳定性、经济效益和污染物去除效率[1318]
    Figure 1.  Role of dissolved oxygen regulation in AOPs: improving system stability, economic and pollutant removal efficiency[1318]

    光催化降解是一种在AOPs水处理应用中被广泛使用的技术[19]. 光催化技术的机理如图2所示,是一种以光化学反应为基础,利用光催化剂的活性位点在紫外/可见光(UV/visible light)激发下产生活性物质(Reactive species,RSs),如羟基自由基(·OH)、超氧自由基(O2·−)和光生空穴(h+)等[20],对污染物进行攻击降解,使之转化为环境无害物质的过程.

    图 2  光催化技术机理[19]
    Figure 2.  The mechanism of photocatalytic technology[19]

    当前研究中溶解氧对光催化氧化体系的作用主要体现在影响RSs生成、光催化剂表面电荷分离以及降解产物迁移转化过程上. 由机理可知,光催化反应需要光源和溶解氧等作为反应的驱动力. 作为光催化反应的氧化剂,溶解氧浓度的增加可以提高反应速率;在无氧或低氧条件时,光催化反应的速率将大大减缓. 利用对苯醌(p-benzoquinone, p-BQ)作为O2·−的清除剂[21]进行淬灭实验并结合曝气实验可发现,在以O2·−为主要贡献的污染物去除体系中[22],光催化剂的导带电位均高于O2/ O2·−的基本电位(-0.046 V vs. NHE),说明来自光催化剂导带的光激发电子(eCB)可以被O2捕获,产生O2·−(式 1)[2324]. 由于光催化技术常因光催化剂内部(或表面)电子-空穴的重组而消耗不必要的能量导致催化降解效率降低[25]. 热力学上,氧分子的电子亲和力大,提高溶解氧浓度意味着为体系提供了更多的电子接受体,促进光生电子的再生、电子-空穴对分离,增强反应的热力学驱动力并提高体系的光催化活性,减少能量损失. 研究表明,溶解氧被光生电子还原成O2·−后可进一步分解或还原生成·OH [26]. Kondrakov等[27]通过同位素追踪18O,发现光生电子还原溶解氧途径最终能生成·OH,但占体系中·OH总量较少,约为5%. 另有研究表明[28],溶解氧还可以参与生成H2O2的反应(式2—3),生成的H2O2在光催化剂的作用下产生·OH,从而参与污染物降解. 另外,Ilisz等[29]发现溶解的O2可以与形成的有机自由基发生反应(式 4),所产生的有机氧自由基能加快与主物质反应致使其转化为中间产物.

    stringUtils.convertMath(!{formula.content}) (1)
    stringUtils.convertMath(!{formula.content}) (2)
    stringUtils.convertMath(!{formula.content}) (3)
    stringUtils.convertMath(!{formula.content}) (4)

    Youn等[2932]在利用TiO2异质光催化剂去除污染物时发现,溶解氧在异质光催化剂表面能够有效清除电子[3334]、避免电子空穴对重新结合[32],并提高两者的分离效率从而促进光催化进程[35]. 为了能够更好地捕获电子,催化剂需要具备吸附水中溶解氧的功能,如典型光催化剂TiO2的Ti3+位点能够吸附溶解氧且该位点上的溶解氧有很高的电子消耗率[3637],换而言之,该类光催化剂对溶解氧有依赖性. 水溶液中溶解氧的增加能够提高·OH的形成速度[38],但超越一定浓度时,过多的气泡吸附在光催化剂的周围,在一定程度上会阻碍光催化剂表面对污染物的吸附[39],导致污染物降解效率下降. 另一方面,初始溶解氧浓度也可以通过影响光催化剂的表面电荷状态,实现对反应内在速率的调节[40];一些具有缺陷设计的半导体材料会改善光催化剂的电子结构、光吸收性能和表面吸附性能等[41],缺陷可以作为电子捕获中心[42],与溶解氧协同促进RSs的生成,同时反应速率也随之增加[38, 43]. 此外,溶液中的氧气流作为搅拌介质还可以放大光照辐射系统中的传质作用[44].

    一般来说,光催化反应通过光源激发催化剂表面上的电子跃迁从而致使污染物降解[45]. 然而,对于一些能够直接光解的光敏性污染物,其吸收光后能够受激发形成电子,形成具有反应活性的自由基或激发态,从而发生光化学反应. 溶解氧在污染物直接光解的过程中可通过奇电子或三重态反应形成光生自由基参与降解,加快动力学反应速率. 然而,溶解氧对一些污染物的激发态有淬灭吸收作用,如萘普生的激发态NP*,氧氟沙星的激发态3OFL*以及双氯芬酸的激发态DCF*,溶解氧会抑制其直接光解[4648].

    综上,初始溶解氧浓度在光催化降解反应中能够影响光催化反应中自由基的产生和传递、催化剂表面的电荷转移以及污染物降解转化产物的种类. 提高初始溶解氧浓度可加速光催化降解过程. 然而,过多的鼓气气泡也会影响光催化剂的稳定性,降低反应效率. 因此,在光催化降解的工程应用中,可通过增加氧气供应量或进行曝气等措施来提高溶解氧浓度,以增强光催化反应的效果. 同时,也需要结合具体反应条件如应温度、污染物种类及浓度、光源强度和波长等因素的影响,进行合理的溶解氧浓度控制提高反应速率和稳定性,达到理想的处理效果.

    芬顿(Fenton)反应是经典的AOPs之一[49],它是基于过氧化氢(H2O2)和亚铁离子(Fe2+)的化学氧化反应[50],并进一步产生·OH来降解污染物(式5—7)[51]. 芬顿氧化的效率受到温度、H2O2浓度、pH和Fe2+浓度等参数的影响,需要一系列特定的条件,以最低能耗来最大限度实现对有机物的去除. 由反应机理可知,H2O2、Fe2+和Fe3+转换以及产生RSs攻击污染物是芬顿反应的关键步骤,溶解氧浓度对这些步骤中的含氧活性物种生成速率都有不同程度的影响.

    stringUtils.convertMath(!{formula.content}) (5)
    stringUtils.convertMath(!{formula.content}) (6)
    stringUtils.convertMath(!{formula.content}) (7)

    随着技术的更新,零价铁(Fe0)作为一种廉价和环保的强还原剂,常被用作芬顿体系中Fe2+的来源[5253],一些研究表明:在酸性的水溶液中,Fe0还能够与溶解氧生成H2O2(式8),大大降低了反应成本[5455]. 随着芬顿技术的发展,光-芬顿、电-芬顿等类芬顿反应以及耦合反应因更优异的污染物去除效率而引起人们关注[5657],溶解氧在这些复合催化体系中作用也有所不同. 光芬顿反应对抗生素污染处理的活性严重依赖H2O2的用量,Du等[58]充分利用了溶解氧所带来的效益,构建磷酸盐改性的TiO2-Fe双位S型异质结,使得H2O2分子在磷酸盐位点上分解产生电子[59],并促使电子在内部电场的驱动下流向金属位点,将吸附的溶解氧还原成O2·−,巧妙地通过双位点配制和定向电子转移来提高溶解氧的利用率,从而减少H2O2消耗. 不仅如此,自Pan等[60]报道了具有高选择性和宽pH值稳定性的单线态氧1O2介导的类芬顿反应降解有机污染物后,人们尝试解决类芬顿体系中1O2产率低的问题[61],并且发现溶解氧浓度与其产率息息相关[62]. 从氧转移机制分析来看,体系中存在溶解氧接收单电子转移生成O2·−以及接收双电子转移生成H2O2的反应(式9—11);生成的H2O2经过Fe(Ⅱ)/Fe(Ⅲ)的氧化还原循环(E0 = 0.77 V)诱导传统芬顿反应生成·OH,而O2·−则可通过异质催化剂掺杂金属—如Mn(Ⅳ)/Mn(Ⅲ)的氧化还原循环(E0 = 1.06 V)生成1O2E0 = −0.65 V)[63]. 此外,异质电芬顿体系中使用过渡金属化合物做阴极[64],能够直接吸附水中的溶解氧发生双电子的氧还原反应(oxygen reduction reaction, ORR)[6566],进一步生成 H2O2,随后在活性位点上原位催化生成·OH [6768],该过程被广泛应用于水中痕量有机污染物的降解[69]. 值得注意的是,当类芬顿体系中存在草酸等容易受光激发产生有机自由基物质时,溶解氧会起到淬灭有机自由基的作用,从而抑制降解反应(式12—13)[70]. 除此之外,在利用芬顿反应还原重金属六价铬Cr (Ⅵ)时,由于Cr(Ⅵ)和O2都是电子受体,彼此存在竞争性,溶解氧的存在会降低Cr(Ⅵ)的还原率.

    stringUtils.convertMath(!{formula.content}) (8)
    stringUtils.convertMath(!{formula.content}) (9)
    stringUtils.convertMath(!{formula.content}) (10)
    stringUtils.convertMath(!{formula.content}) (11)
    stringUtils.convertMath(!{formula.content}) (12)
    stringUtils.convertMath(!{formula.content}) (13)

    由此可见,溶解氧在芬顿、类芬顿以及芬顿耦合工艺体系中起着至关重要的作用,是与电子反应生成O2·−和H2O2,进而转变成羟基自由基的关键物质. 在实际工程中可以通过搅拌增加液体的氧气弥散、提高反应温度、改进气体分配系统等方式调控溶解氧浓度,同时设计改进反应器形式、催化剂来提高溶解氧的利用率有助于减少能耗,实现更好的工程应用效果.

    基于过硫酸盐(PS)的AOPs在基础研究和实际应用中都受到越来越多的关注[7172],其主要通过热、光或过渡金属等激活PS(包括过一硫酸盐PMS和过二硫酸盐PDS)生成各种RSs(·OH、SO4·−1O2等)来降解有机污染物(式 14—18)[73].

    stringUtils.convertMath(!{formula.content}) (14)
    stringUtils.convertMath(!{formula.content}) (15)
    stringUtils.convertMath(!{formula.content}) (16)
    stringUtils.convertMath(!{formula.content}) (17)
    stringUtils.convertMath(!{formula.content}) (18)

    溶解氧在PS体系中对有机污染物降解表现出两面性[74]:在还原PS体系降解六氯乙烷过程中,溶解氧具有消极作用[75]. 然而在氧化PS体系中,溶解氧有利于苯[76]、环烷酸[77]和一些微污染物的降解[78]. Zhang等[78]根据量子化学计算研究了溶解氧的影响,表明氧分子可以增加有机物的吉布斯自由能,从而促进SO4·−引发对污染物的氧化反应. Xu等[74]的动力学实验揭示了在热活化PS氧化体系中,溶解氧作为有效的氧化剂可以促进降解环烷酸. 在超过80 ℃的条件下,能实现完全矿化,其中四到六成的总有机碳(TOC)和溶解氧的存在有关[77]. 在腐殖酸类有机物激活PS处理复杂有机污染物时,Fang等利用GC-MS、LC-QTOF-MS检测比较有氧和无氧条件下的降解副产物,推测过程中可能形成有机自由基(R·),这些有机自由基倾向于与溶解氧反应形成O2·−/HO2·(式 19—22),并在PS体系中起到积极的作用[79]. 因此,适量的溶解氧可以促进PS的热力学过程和氧化过程,并提高PS与污染物相互作用的频率和强度[80].

    stringUtils.convertMath(!{formula.content}) (19)
    stringUtils.convertMath(!{formula.content}) (20)
    stringUtils.convertMath(!{formula.content}) (21)
    stringUtils.convertMath(!{formula.content}) (22)

    溶解氧浓度还可以影响PS氧化技术中RSs的产生路径和循环反应. Wang等[81]研究溶解氧和O2·−在PS/bisulfite体系下可能的反应机制(图3),表明溶解氧能够与SO3·−反应生成SO5·−,最终转化为SO4·−,换而言之,除了上述对有机污染物降解效率的直接影响,初始溶解氧浓度还可以影响PS技术中复杂反应的速率和机理并促进PS体系中氧、硫化合物的转化循环[82]. 由于氧、硫转化路径中溶解氧不可或缺的作用,在基于过硫酸盐氧化的实际应用中,可以根据具体反应条件和要求选择不同的方法来进行溶解氧浓度的调节和优化,如通过空气通气、微气泡法等来增加溶解氧浓度,提高过硫酸盐氧化处理的效率和效果.

    图 3  PS体系的氧硫转化途径[82]
    Figure 3.  Oxygen/Sulfur conversion pathway of PS system[82]

    臭氧(ozone)是一种强效氧化剂(氧化电位2.07 V),可用于直接氧化有机污染物(直接作用在具有碳碳双键的化合物上,使其断裂)或作为其他活性物种(如·OH)的前体物参与有机污染物降解. 当臭氧与水接触时,它变得极不稳定,通过一系列复杂的反应进行分解(式23—31)生成多种RSs. 紫外线与臭氧的耦合高级氧化过程UV/O3是一种常见的AOPs,可用于水和空气的净化[83]. 类似于UV/H2O2和UV/Cl等这些过程,其技术原理是利用UV的能量激发氧分子和氧化剂,产生高活性的RSs(如·OH、O2·−和活性氯物种等)氧化和降解污染物,并达到去除水中有机污染物的目的[84]. 一般来说,UV/O3也从臭氧的光解开始—在一定波长的UV照射下臭氧衍生·OH从而分解和矿化污染物[85]. 其中,溶解氧能够抑制已经形成的自由基阳离子和电子的重组,增加O2·−和过氧羟基自由基(HO2·)等由溶解氧质子化形成的含氧活性物种的浓度[86]. 研究证明了在UV作用下的氧转移机制:氧分子会发生光解反应生成两个氧原子,氧原子和另一氧分子相结合形成臭氧[87],同时臭氧也因吸收UV而分解. 由于两者是可逆反应,溶解氧浓度会影响其反应速率,当达到平衡浓度时,升高溶解氧浓度对体系没有进一步的促进作用[88]. 以UV/O3降解水中的苯酚为例,相较于无氧条件,水中溶解氧的存在能够明显提高苯酚的去除率,但提高溶解氧浓度对苯酚去除率的提升不明显[89]. 实验结果表明,溶解氧在臭氧氧化体系中具有强电子竞争性,能够争夺电子来提高含氧活性物种的浓度,并促进有机污染物的降解,但当溶解氧浓度达到可逆反应平衡浓度时,对体系的促进作用甚微,明确地指示了溶解氧浓度-效应关系. 因此,利用好溶解氧与臭氧的转换特性及其电子受体的特点,提高溶解氧利用率,实际应用中需确定并保持最佳溶解氧浓度范围,对优化臭氧氧化体系具有重要意义.

    stringUtils.convertMath(!{formula.content}) (23)
    stringUtils.convertMath(!{formula.content}) (24)
    stringUtils.convertMath(!{formula.content}) (25)
    stringUtils.convertMath(!{formula.content}) (26)
    stringUtils.convertMath(!{formula.content}) (27)
    stringUtils.convertMath(!{formula.content}) (28)
    stringUtils.convertMath(!{formula.content}) (29)
    stringUtils.convertMath(!{formula.content}) (30)
    stringUtils.convertMath(!{formula.content}) (31)

    声化学氧化是一种利用超声波“气蚀现象”产生的能量将水分子热解(式32)成RSs(OH·、HO2·和H2O2等)的技术[90],能够有效去除废水中的污染物并且不产生二次污染. 由于超声波氧化的主要动力来源于高能量的超声波在液体中产生微小气泡并快速爆破塌陷,因此溶液中的气体浓度水平对超声氧化体系的影响不容忽视.

    stringUtils.convertMath(!{formula.content}) (32)

    研究发现,溶解氧可以通过促进声波空化现象(超声波在液体中传播时引起液体中的气泡形成和破裂)的发生,从而影响声波空化过程中产生的氧化剂的种类和数量,提高超声氧化的效果[9091]. 空化过程中会产生大量的自由基和其他反应物质(式 33—36),较高的溶解氧浓度可以增加产生的·OH和O2·−的数量对水中的有机污染物进行氧化降解,从而增强超声氧化的效果[92]. 此外,影响声波空化的因素有超声波频率、液体的表面张力与黏滞系数以及液体的温度等,声波空化的频率会随着条件变化而降低,导致超声氧化的速率减缓[9394]. 因此在实际应用中应采用溶解氧分压计检测并通过控制气泡鼓入速度调节溶液中溶解氧浓度.

    stringUtils.convertMath(!{formula.content}) (33)
    stringUtils.convertMath(!{formula.content}) (34)
    stringUtils.convertMath(!{formula.content}) (35)
    stringUtils.convertMath(!{formula.content}) (36)

    除了自由基影响,Moriwaki等[95]进一步解释了不同种类气体喷射条件下,超声氧化效率随着气体比热比的增加而增加,声空化的热量不易从气蚀气泡流失到溶液中;并且维持较高的热梯度,能保证能量释放,因此比热比高的气体曝气条件下超声氧化降解效率较好. 然而,超声氧化技术的主要缺点是能耗和较长的反应时间[96],因此超声氧化技术常与其他高级氧化过程耦合[9799],其中与溶解氧耦合被多次证明能转化成一定数量的·OH,并成为主要的RSs,进一步增强有机污染物的降解和矿化[100]. 超声处理中加入高效可回收的压电催化剂(如ZnO、MoS2、BiFeO3和BaTiO3 等)[101105],在超声波振动下利用自然机械能来实现水体净化,溶解氧参与的反应可解释为(式37—41). 结果表明,在设计压电催化材料时通过修饰可控氧空位来增强材料对水中溶解氧的吸附和活化[106],提高后续的RSs产出.

    stringUtils.convertMath(!{formula.content}) (37)
    stringUtils.convertMath(!{formula.content}) (38)
    stringUtils.convertMath(!{formula.content}) (39)
    stringUtils.convertMath(!{formula.content}) (40)
    stringUtils.convertMath(!{formula.content}) (41)

    电化学氧化法因其高效率、环境适应性和安全性成为目前较有前景的有机污染物降解方法之一. 在电化学体系中,降解途径分为直接氧化(污染物被吸附在电极表面后被电子破坏)和间接氧化(阳极和阴极反应生成强氧化性的自由基攻击污染物)[107],前者受限于有机化合物在体系中传输速度的差异[108],而后者受电极材料性质、电解液和实验条件的影响[109].

    溶解氧作为唯一的氧源,对电极和活性基团均有影响[110]. 研究发现,提高溶解氧浓度能够有效抑制TiO2负载的光阳极表面电子-空穴对复合[111],增大了催化效率. 光催化燃料电池在有氧和无氧条件下对氧氟沙星的最终降解效率相差无几[28],但却存在截然不同的降解途径:溶解氧存在条件下,与电子反应形成O2·−,O2·−是参与氧氟沙星降解的主要RSs;而无氧条件下,水合电子eaq会替代O2·−成为主要的RSs,对有机污染物发起直接电子攻击,进一步发现氧氟沙星的降解速率常数随着溶解氧浓度的提高而加快,且电池电压也随之增大,原因是溶解氧在水中形成的电位差能够增强两个电极之间的电势[112]. 另外,溶解氧在阴极[113]能够通过双电子还原形成H2O2,随即H2O2被激活[114],产生·OH [115];或通过单电子转移形成O2·的方式来促进酚类化合物和染料等有机污染物的降解(图4). 值得注意的是,由于溶解氧可以和金属电极发生氧化反应(式 42),因此溶解氧浓度过高(还原剂不足)会导致电极材料的腐蚀[116]. 更有研究表明,高浓度的溶解氧通过水的自离子化反应生成的氢离子和氢氧根离子会影响电解液的导电性,降低电解质的导电率[117],从而影响电化学反应的进行. 因此,在利用电化学氧化法去除污染物的实际工程应用中,可加强氧气通气、改善温度和pH增加溶解氧的浓度,同时可适当添加氧化剂来增加氧气的利用效率,提高反应速率.

    图 4  溶解氧在电化学阴极的反应[107]
    Figure 4.  Reaction of dissolved oxygen at the electrochemical cathode[107]
    stringUtils.convertMath(!{formula.content}) (42)

    初始溶解氧浓度作为影响AOPs反应过程的重要因素,其作用机制主要包括动力学(反应速率、反应机制)和热力学(能量变化和反应平衡)两个方面. 本文系统地综述了溶解氧在6种代表性AOPs体系(光催化氧化、芬顿氧化、过硫酸盐氧化、臭氧氧化、声化学氧化和电化学氧化)中的影响机制,为AOPs反应条件改进以及溶解氧参与的反应路径的探索提供参考.

    总体来看,初始溶解氧浓度通过直接影响反应的速率和有机污染物去除效率作用于高级氧化反应. 提高初始溶解氧浓度可以提高AOPs的反应活性,同时还可以增加反应产物的选择性. 然而,初始溶解氧浓度对反应的影响并不总是线性的,不同的AOPs对初始溶解氧的依赖程度不同. 对于光催化反应,热力学分析表明溶解氧在光催化体系中能够快速结合电子,降低电子-空穴对的复合率,大大提升催化剂的使用效率和有机污染物的降解速率;在芬顿和过硫酸盐等含氧化剂体系中,溶解氧机制较为复杂——在参与氧物种循环的同时协同促进耦合氧化技术的反应,因此从动力学角度来看,溶解氧浓度的增加可以加快反应速率;臭氧氧化体系中,溶解氧能够促进含氧活性物种的生成;声化学氧化中,溶解氧可以促进声波空化现象的发生来加强超声氧化降解;同时,溶解氧作为电化学阴极反应物的同时,其浓度变化也会影响电化学氧化体系的稳定性、电极材料的腐蚀以及电解液的导电性. 在实际应用中,需要根据具体技术和反应条件,综合考虑溶解氧的浓度、流速、温度等因素,以最优条件促进反应过程的高效进行.

    通过分析评价溶解氧对AOPs的影响机制可知,调控溶解氧浓度以提升AOPs效率的研究仍需深入科学层面和应用层面的探索,需明确氧原子的转移机制;耦合工艺中溶解氧在不同界面、不同物质循环中复杂的作用机制还需深入探讨和完善. 目前对于通过调节溶解氧浓度的手段来降低AOPs的能耗、提高处理效率和工程经济性的研究大多处于实验阶段,因效能或人为控制问题未能广泛应用于实际,未来研究需加强实验与应用相结合,将实验研究成果转化为实际工程中的技术与设备,进一步推动AOPs的发展和应用.

  • 图 1  实验装置及流程图

    Figure 1.  Experimental flow chart

    图 2  脉冲调制后DDBD放电典型电流电压波形图

    Figure 2.  Typical current and voltage waveform of modulated DDBD discharge

    图 3  Mn2O3(222)晶面的3×3×1的超晶胞

    Figure 3.  3×3×1 supercell of Mn2O3 (222) crystal plane

    图 4  Mn2O3/γ-Al2O3催化剂的XRD光谱、Mn 2p XPS光谱和O 1s XPS光谱

    Figure 4.  (a) XRD spectrum, Mn 2p XPS spectrum and O 1s XPS spectrum of Mn2O3/γ-Al2O3 catalyst

    图 5  Mn2O3/γ-Al2O3和Mn2O3纳米颗粒的电子显微镜图像

    Figure 5.  SEM image, TEM image and SAED image of Mn2O3/γ-Al2O3 catalyst

    图 6  VOCs单独降解及在混合VOCs中降解时的降解率:

    Figure 6.  Degradation rates of VOCs’ degradation alone and in mixed VOCs: (a) toluene; (b) acetone; (c) ethyl acetate

    图 7  甲苯单独降解的有机副产物

    Figure 7.  Organic by-products of toluene degradation alone

    图 8  VOCs单独降解及在混合VOCs中降解时的臭氧产量

    Figure 8.  Ozone production of VOCs’ degradation alone and in mixed VOCs: (a) toluene; (b) acetone; (c) ethyl acetate

    图 9  VOCs单独降解及在混合VOCs中降解时的碳平衡

    Figure 9.  Carbon balance of VOCs’ degradation alone and in mixed VOCs: (a) toluene; (b) acetone; (c)ethyl acetate

    图 10  优化后的O3分子模型和Mn2O3(222)晶面模型

    Figure 10.  Optimized O3 molecular model and Mn2O3 (222) crystal plane model

    表 1  在SIE为700 J ∙ L−1时,各VOCs的降解率及其提升率

    Table 1.  Degradation rate and improvement rate of VOCs at SIE of 700 J ∙ L−1

    指标甲苯乙酸乙酯丙酮
    单独混合单独混合单独混合
    无催化时的降解率61%84.7%59.6%67.1%50.1%31.1%
    有催化时的降解率72.6%91.1%70.2%79.1%58.4%45.3%
    提升率19%7.5%17.9%18%16.7%45.8%
    指标甲苯乙酸乙酯丙酮
    单独混合单独混合单独混合
    无催化时的降解率61%84.7%59.6%67.1%50.1%31.1%
    有催化时的降解率72.6%91.1%70.2%79.1%58.4%45.3%
    提升率19%7.5%17.9%18%16.7%45.8%
    下载: 导出CSV

    表 2  O3分子的马利肯电荷

    Table 2.  Maliken charge of O3 molecule

    原子种类吸附前/e吸附后/e
    O14.945.97
    O24.946.09
    O34.946.03
    原子种类吸附前/e吸附后/e
    O14.945.97
    O24.946.09
    O34.946.03
    下载: 导出CSV
  • [1] 赵琼. 低温等离子体降解VOCs的DBD反应器优化探索和产物分析[D]. 上海: 东华大学, 2017.
    [2] 赵琳, 张英锋, 李荣焕, 等. VOC的危害及回收与处理技术[J]. 化学教育, 2015, 36(16): 1-6.
    [3] 冯发达. 反电晕等离子体发生方法及协同催化处理挥发性有机物的研究[D]. 杭州: 浙江大学, 2014.
    [4] ZHANG H B, LI K, SHU C H, et al. Enhancement of styrene removal using a novel double-tube dielectric barrier discharge (DDBD) reactor[J]. Chemical Engineering Journal, 2014, 256: 107-118. doi: 10.1016/j.cej.2014.06.105
    [5] NA C J, YOO M J, TSANG D C W, et al. High-performance materials for effective sorptive removal of formaldehyde in air[J]. Journal of Hazardous Materials, 2018, 366: 452-465.
    [6] CHUNG W C, MEI D H, TU X, et al. Removal of VOCs from gas streams via plasma and catalysis[J]. Catalysis Reviews-Science And Engineering, 2019, 61(2): 270-331. doi: 10.1080/01614940.2018.1541814
    [7] LU J C, HAO H S, ZHANG L M, et al. The investigation of the role of basic lanthanum (La) species on the improvement of catalytic activity and stability of HZSM-5 material for eliminating methanethiol- (CH3SH)[J]. Applied Catalysis B Environmental, 2018, 237: 185-197. doi: 10.1016/j.apcatb.2018.05.063
    [8] LU J C, LIU J P, ZHAO Y T, et al. The identification of active chromium species to enhance catalytic behaviors of alumina-based catalysts for sulfur-containing VOC abatement[J]. Journal of Hazardous Materials, 2020, 384: 121289. doi: 10.1016/j.jhazmat.2019.121289
    [9] 吴萧, 刘盛余, 何廷宇, 康岷慧, 等. 介质阻挡放电低温等离子体技术处理3种代表性VOC[J]. 环境工程学报, 2017, 11(10): 5502-5508. doi: 10.12030/j.cjee.201612064
    [10] 秦彩虹, 党小庆, 黄家玉, 等. 气体循环条件下等离子体催化氧化吸附态的苯和甲苯[J]. 环境工程学报, 2017, 11(3): 1691-1697. doi: 10.12030/j.cjee.201512014
    [11] 陈睿, 王升高, 崔丽佳, 等. FeMnOx和等离子体对苯的协同降解[J]. 真空与低温, 2016, 22(3): 173-176. doi: 10.3969/j.issn.1006-7086.2016.03.012
    [12] 王保伟, 姚淑美, 彭叶平, 等. 介质阻挡放电等离子体降解高浓度甲苯[J]. 环境工程学报, 2018, 12(7): 1977-1985. doi: 10.12030/j.cjee.201801156
    [13] ZHAO X L, LIU X, J LIU, et al. The effect of ionization energy and hydrogen weight fraction on the non-thermal plasma VOCs removal efficiency[J]. Journal of Physics D:Applied Physics, 2019, 52: 145201. doi: 10.1088/1361-6463/aafe8b
    [14] 郭玉芳, 叶代启, 陈克复. 挥发性有机化合物(VOCs)的低温等离子体-催化协同净化[J]. 工业催化, 2005(11): 4-8.
    [15] WU Z L, ZHOU W L, ZHU Z B, et al. Enhanced oxidation of xylene using plasma activation of an Mn/Al2O3 catalyst[J]. IEEE Transactions on Plasma Science, 2020, 48(1): 163-172. doi: 10.1109/TPS.2019.2959698
    [16] ZHU X B, TU X, MEI D H, et al. Investigation of hybrid plasma-catalytic removal of acetone over CuO/γ-Al2O3 catalysts using response surface method[J]. Chemosphere, 2016, 155: 9-17. doi: 10.1016/j.chemosphere.2016.03.114
    [17] ZHU X B, ZHANG S, YANG Y, et al. Enhanced performance for plasma-catalytic oxidation of ethyl acetate over La1-xCexCoO3+δ catalysts[J]. Applied Catalysis B-Environmental, 2017, 213: 97-105. doi: 10.1016/j.apcatb.2017.04.066
    [18] LU W J, ABBAS Y, MUSTAFA M F, et al. A review on application of dielectric barrier discharge plasma technology on the abatement of volatile organic compounds[J]. Frontiers of Environmental Science & Engineering, 2019, 13(2): 30.
    [19] JIANG N, GUO L J, QIU C, et al. Reactive species distribution characteristics and toluene destruction in the three-electrode DBD reactor energized by different pulsed modes[J]. Chemical Engineering Journal, 2018, 350: 12-19. doi: 10.1016/j.cej.2018.05.154
    [20] ZHAO J H, NING L, YU R X, et al. Magnetic field enhanced denitrification in nitrate and ammonia contaminated water under 3D/2D Mn2O3/γ-C3N4 photocatalysis[J]. Chemical Engineering Journal, 2018, 349: 530-538. doi: 10.1016/j.cej.2018.05.124
    [21] ZHANG X D, LV X T, BI F K, et al. Highly efficient Mn2O3 catalysts derived from Mn-MOFs for toluene oxidation: The influence of MOFs precursors[J]. Molecular Catalysis, 2019, 482: 110701.
    [22] KARUPPIAH J, REDDY E L, REDDY P M K, et al. Abatement of mixture of volatile organic compounds (VOCs) in a catalytic non-thermal plasma reactor[J]. Journal of Hazardous Materials, 2012, 237: 283-289.
    [23] MA T P, ZHAO Q, LIU J Q, et al. Study of humidity effect on benzene decomposition by the dielectric barrier discharge nonthermal plasma reactor[J]. Plasma Science & Technology, 2016, 18(6): 686-692.
    [24] VANDENBROUCKE A M, MORENT R, DE GEYTER N, et al. Non-thermal plasma for non-catalytic and catalytic VOC abatement[J]. Journal of Hazardous Materials, 2011, 195: 30-45. doi: 10.1016/j.jhazmat.2011.08.060
    [25] XIE S H, DENG J G, LIU Y X, et al. Excellent catalytic performance, thermal stability, and water resistance of 3DOM Mn2O3-supported Au-Pd alloy nanoparticles for the complete oxidation of toluene[J]. Applied Catalysis, A. General, 2015, 507: 82-90. doi: 10.1016/j.apcata.2015.09.026
    [26] CHEN Y, LIAO Y F, CHEN L, et al. Performance of transition metal (Cu, Fe and Co) modified SCR catalysts for simultaneous removal of NO and volatile organic compounds (VOCs) from coal-fired power plant flue gas[J]. Fuel, 2021, 289: 119849. doi: 10.1016/j.fuel.2020.119849
    [27] YU H, HU W, HE J, et al. Decomposition efficiency and aerosol by-products of toluene, ethyl acetate and acetone using dielectric barrier discharge technique[J]. Chemosphere, 2019, 237: 124439. doi: 10.1016/j.chemosphere.2019.124439
    [28] CHEN J Y, LIU J Q, LIU X, et al. Decomposition of toluene with a combined plasma photolysis (CPP) reactor: influence of UV irradiation and byproduct analysis[J]. Plasma Chemistry And Plasma Processing, 2020, 41(1): 409-420.
    [29] Pan K L, Chang M B. Plasma catalytic oxidation of toluene over double perovskite-type oxide via packed-bed DBD[J]. Environmental Science and Pollution Research, 2019, 26(13): 12948-12962. doi: 10.1007/s11356-019-04714-0
    [30] STANISLAV P, JAN M. Temperature-and airflow-related effects of ozone production by surface dielectric barrier discharge in air[J]. European Physical Journal D, 2014, 68(10): 310. doi: 10.1140/epjd/e2014-50393-x
    [31] BO Z, HAO H, YANG S L, et al. Vertically-oriented graphenes supported Mn3O4 as advanced catalysts in post plasma-catalysis for toluene decomposition[J]. Applied Surface Science, 2018, 436: 570-578. doi: 10.1016/j.apsusc.2017.12.081
  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0401234Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 8.3 %DOWNLOAD: 8.3 %HTML全文: 88.7 %HTML全文: 88.7 %摘要: 3.0 %摘要: 3.0 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 98.5 %其他: 98.5 %XX: 0.6 %XX: 0.6 %天津: 0.2 %天津: 0.2 %张家口: 0.2 %张家口: 0.2 %淄博: 0.2 %淄博: 0.2 %通化: 0.2 %通化: 0.2 %镇江: 0.2 %镇江: 0.2 %其他XX天津张家口淄博通化镇江Highcharts.com
图( 10) 表( 2)
计量
  • 文章访问数:  6265
  • HTML全文浏览数:  6265
  • PDF下载数:  92
  • 施引文献:  0
出版历程
  • 收稿日期:  2021-09-04
  • 录用日期:  2022-03-04
  • 刊出日期:  2022-06-10
刘鑫, 刘建奇, 陈佳尧, 钟方川. 催化剂协同介质阻挡放电等离子体对不同VOCs的催化选择性[J]. 环境工程学报, 2022, 16(6): 1862-1871. doi: 10.12030/j.cjee.202109019
引用本文: 刘鑫, 刘建奇, 陈佳尧, 钟方川. 催化剂协同介质阻挡放电等离子体对不同VOCs的催化选择性[J]. 环境工程学报, 2022, 16(6): 1862-1871. doi: 10.12030/j.cjee.202109019
LIU Xin, LIU Jianqi, CHEN Jiayao, ZHONG Fangchuan. Catalytic selectivity of catalyst in the degradation of mixed VOCs by dielectric barrier discharge plasma[J]. Chinese Journal of Environmental Engineering, 2022, 16(6): 1862-1871. doi: 10.12030/j.cjee.202109019
Citation: LIU Xin, LIU Jianqi, CHEN Jiayao, ZHONG Fangchuan. Catalytic selectivity of catalyst in the degradation of mixed VOCs by dielectric barrier discharge plasma[J]. Chinese Journal of Environmental Engineering, 2022, 16(6): 1862-1871. doi: 10.12030/j.cjee.202109019

催化剂协同介质阻挡放电等离子体对不同VOCs的催化选择性

    通讯作者: 钟方川(1966—),男,博士,研究员,fczhong@dhu.edu.cn
    作者简介: 刘鑫(1990—),男,博士研究生,liuxin0724@126.com
  • 1. 东华大学环境科学与工程学院,上海 201620
  • 2. 东华大学理学院,上海 201620
  • 3. 教育部磁约束核聚变研究中心,东华大学,上海 201620
基金项目:
中央高校基本科研业务费专项资金(2232021G-10)

摘要: 为考察混合气体中各组分对VOCs降解的影响,以及催化剂在协同低温等离子体降解多组分VOCs气体中的表现,选取甲苯、丙酮及乙酸乙酯组成混合VOCs进行低温等离子体降解,进而研究混合降解方式对混合VOCs气体各组分降解效果的影响。先制备了Mn2O3/γ-Al2O3催化剂,采用催化剂后置方式研究催化剂在协同低温等离子体降解多组分混合VOCs气体过程中的表现。结果表明:多组分混合VOCs降解时,甲苯和乙酸乙酯的降解率相较单独降解时都有所提升,当特定输入能量(SIE)为700 J∙L−1时,提升率分别为69.1%和12.64%,而丙酮的降解率相较单独降解时却发生了明显下降,下降了40.74%;多组分混合VOCs降解时的臭氧产量相较3种VOCs单独降解时均有微弱下降;多组分混合VOCs相较单种VOCs降解时的碳平衡均略有下降;在协同低温等离子体降解多组分VOCs气体过程中,Mn2O3/γ-Al2O3催化剂对混合VOCs中甲苯、乙酸乙酯及丙酮降解率有明显提升,且随VOCs降解难度的上升而更加明显,并使得各条件下VOCs降解的碳平衡均得到了提升。本研究结果可为低温等离子体降解VOCs的实际应用提供参考。

English Abstract

  • 可挥发性有机化合物(volatile organic compounds, VOCs)是大气污染物中一大类[1-3]。浓度较高的VOCs气体会刺激人的眼睛、鼻子或咽喉等,导致干咳头晕、恶心疲劳等症状。长期生活在受VOCs污染的环境中,人体的神经系统会被损害,并诱发癌症,故VOCs的治理刻不容缓[4-6]

    传统VOCs处理技术主要有燃烧法、催化氧化法、吸收吸附法等。其中,燃烧法的操作较为简单,但因危险性较高,故对安全防护的要求较高;催化氧化法不需要额外试剂,且产生污染物较少,但同时存在催化剂稳定性和寿命等限制[7-8];吸收法可将VOCs回收再利用,但需根据待处理VOCs种类使用特定吸收剂,普适性较差;吸附法常用活性炭作为吸附剂,净化率高,但活性炭使用寿命很短,需频繁更换。

    低温等离子体(non-thermal plasma, NTP)技术是一种新型VOCs处理技术,相较于传统VOCs处理技术,具有适用性广、响应快速等特点,因而受到广泛关注[9-11]。在众多产生NTP的放电形式中,介质阻挡放电(dielectric barrier discharge, DBD)因其结构简单、可通过改变放电参数调控等离子体能量密度,且能处理较大流量气体等优势而被广泛研究。王保伟等[12]通过研究放电间距对单介质阻挡放电(single dielectric barrier discharge, SDBD) 等离子体降解甲苯的影响,发现随放电间距的增大,甲苯转化率和CO2选择性呈先增后降趋势。ZHAO等[13]使用双介质阻挡放电(double dielectric barrier discharge, DDBD)等离子体降解多种芳烃、烷烃、酮和酯类VOCs,发现电离能是影响所有VOCs降解效率的重要参数,电离能越大,降解效率越低。相较于SDBD放电腔,DDBD放电腔可很好地保护放电电极不受工作气体污染。

    为进一步优化NTP技术,提升VOCs转化率,并降低NTP降解VOCs过程中产生的臭氧与有机副产物产量,催化剂协同技术被越来越多应用于NTP降解VOCs的体系中[10-11, 14-17]。在众多研究中,对催化剂性能的表征大多使用单种VOCs进行。然而,实际情况下待处理的VOCs组分复杂,催化剂在多组分VOCs的处理中的表现还鲜有报道。

    本研究拟使用双介质阻挡放电(DDBD)反应器产生低温等离子体,以甲苯、丙酮及乙酸乙酯的混合气体作为待降解模拟VOCs混合废气[18-19],并制备常用于协同NTP降解VOCs的Mn2O3/γ-Al2O3催化剂,以研究NTP降解复杂成分VOCs的特性,以及催化剂对NTP降解混合VOCs的影响,以期为NTP降解VOCs的实际应用提供参考。

    • 实验装置及流程图如图1所示。模拟混合VOCs废气由高浓度丙酮、甲苯及乙酸乙酯标气经稀释得到。稀释标气所用气体为经过纯净空气发生器干燥后的压缩空气。使用4个质量流量控制器(mass flow controller, MFC)分别控制丙酮、甲苯、乙酸乙酯及压缩空气的流量,以得到实验所需的各VOCs组分的初始浓度。模拟混合VOCs经缓冲瓶混合后通入DDBD反应器降解,模拟VOCs的流速固定在1 L ∙ min−1。在VOCs单独降解实验中,甲苯、丙酮及乙酸乙酯的初始体积分数均为(33±2)×10−6。在混合VOCs降解实验中,甲苯、丙酮及乙酸乙酯的初始体积分数也均为(33±2)×10−6

      DDBD反应器的2层介质分别为1根外径为20 mm,内径为17 mm的石英管(外管),以及1根外径为8 mm、内径为6 mm的石英管(内管)。内管中放置1根直径6 mm的铜棒作为高压电极,外管缠绕宽度为10 cm的铝箔作为接地电极。模拟混合VOCs经DDBD反应器进气口进入反应器内进行低温等离子体降解。经初步降解后的废气由反应器出气口进入催化剂反应管进行进一步反应。该催化剂反应管为内径5 mm、长度30 cm的石英管。

      降解前后的VOCs、CO和CO2体积分数均使用气相色谱仪(GC2060ⅢA,上海锐敏仪器有限公司)在线测定。其中,VOCs的体积分数使用配置有HT-5型毛细管柱(柱长30 m,内径0.32 mm)的火焰离子化检测器(flame ionization detector, FID)检测;CO和CO2的体积分数使用配有甲烷化转化炉的FID检测器检测。气相色谱仪的检测条件设定为:炉温60 ℃,检测器温度140 ℃,进样器温度120 ℃,甲烷转换炉320 ℃。反应过程中生成的臭氧体积分数使用臭氧检测仪(GT-2000-k3, Korno)测定。

    • 将一定量的Mn(NO3)2(AR,国药集团化学试剂有限公司)与2 g γ-Al2O3(球形,国药集团化学试剂有限公司)分散在含有分散剂聚乙烯吡咯烷酮(质量分数2%)(AR,国药集团化学试剂有限公司)、乙醇(质量分数12%)(AR,国药集团化学试剂有限公司)和去离子水的混合溶液中。其中,Mn(NO3)2的量取决于Mn元素与γ-Al2O3的质量比。将混合物超声分散1 h后转移进容积为100 mL的聚四氟乙烯瓶中,在140 ℃条件下放置6 h[20-21]。混合物冷却至室温后,用去离子水洗涤3次,并在60 ℃下干燥,最后在马弗炉中以500 ℃煅烧产物6 h以获得催化剂。

    • VOCs废气的降解效果通常使用降解率与碳平衡进行表征。其中,VOCs的降解率(degradation rate, DR)由式(1)计算得到[22]

      式中:cincout分别为降解前后各VOCs组分的体积分数,10−6

      VOCs降解后的碳平衡(carbon balance, CB)可通过式(2)计算得到。

      式中:nCOnCO2分别为VOCs降解产生的CO与CO2的体积分数,10−6nTnE以及nA分别为被降解的甲苯、乙酸乙酯及丙酮的体积分数,10−6;数字7、4、3分别为甲苯、乙酸乙酯及丙酮分子中所含碳原子数。

      DDBD放电腔通过高压电源(CTP-2000K,南京苏曼电子有限公司)驱动放电,电源频率为10 kHz;放电腔两端的电压和电流分别通过高压探头( P6015A, Tektronix)及电流探头(5315, ETA)检测,并使用数字示波器记录(MDO3032, Tektronix)记录其放电波形。本课题组前期研究发现,调制脉冲电源可改善DDBD等离子体降解VOCs的能量效率。因此,在本实验中,电源通过一个矩形脉冲来调制一个中心频率为10 kHz 的正弦波形,并将高压电源的占空比和调制频率固定为20%与150 Hz。调制后的DDBD放电典型电流电压波形如图2所示。

      反应器放电功率P可通过式(3)计算得到[23]

      式中:T为脉冲电源的脉冲宽度,s;f为调制脉冲频率,Hz; U(t)为高压探头测得的放电电压,V;I(t)为电流探针测得的放电电流,A。

      进而可通过式(4)计算得到低温等离子体降解VOCs过程中的特定输入能量(specific input energy,SIE)。SIE是低温等离子体降解VOCs效果评价的重要参数之一[24]

      式中:Q为模拟VOCs废气的流速,L ∙ min−1

    • 催化剂的元素含量通过Prodigy ICP装置(利曼,美国)上的电感耦合等离子体(inductively coupled plasma, ICP)光电发射光谱进行测量。氮气吸附-脱附等温线在ASAP-2460分析仪上获得的。使用传统brunauer-emmett-teller(BET)和barrett-joyner-halenda(BJH)方程中的吸附数据确定催化剂的比表面积、孔径分布和孔体积;使用DD Max-2550PC型18 kW转靶X射线衍射仪(里加库,日本)记录催化剂粉末X射线衍射(X-ray diffraction, XRD)图;催化剂的X射线光电子能谱(X-ray photoelectron spectroscopy, XPS)由Thermo Escalab 250Xi型X射线光电子能谱仪(ThermoFisher,美国)在Al-K(1486.6 eV,150 W)辐射下获得;通过扫描电镜(scanning electron microscope, SEM)(JEOL 7800 F,日本)研究催化剂的形态。使用高分辨率透射电镜(high resolution transmission electron microscope, HR-TEM)(FEI Tecnai G2F30,美国)测定了催化剂的结构和元素图。

    • 为分析催化剂的催化机理,使用密度泛函理论(density functional theory, DFT)模型计算了臭氧在Mn2O3晶体上的吸附过程。Mn2O3采用了最常见的(222)晶面,切面时,将其厚度设为1。单晶面包含43个单元,其中氧原子27个、锰原子16个。为避免表面间的原子相互作用,添加了2.4 nm的真空层。最终产生Mn2O3(222)晶面的模型,其晶格三维长度分别为a=1.330 77 nm, b=1.330 77 nm, c=2.50 nm,其3×3×1的超晶胞如图3所示。

      在DFT计算过程中,采用原子PAW_PBE泛函,布里渊区k值设定为k=2×2×1。每一步运算都通过VASP 5.4.1 for Linux软件进行结构优化计算。运算采用的超算服务器,CPU为Intel Xeon Platinum单节点96核。

    • 实验制备MnOx/γ-Al2O3的XRD如图4(a)所示。在2θ为23°、33°、38°和55°处出现了较强的衍射峰,这4个衍射峰可较好地对应Mn2O3晶体立方结构(PDF 002-0896)的(211)、(222)、(400)和(440)晶面。其中,2θ为33°和55°是Mn2O3的主峰。这表明Mn2O3在γ-Al2O3上具有良好的分散性[25]

      图4(b)为Mn2p的XPS图谱,其中2个分别位于641.7 eV和653.4 eV的主峰与文献中的Mn2O3所对应的峰值相匹配。对XPS图谱进行高斯拟合后,位于642.5 eV、641.5 eV和640.4 eV处的3个峰值分别对应于Mn4+、Mn3+和Mn2+。在643.8 eV处的最低峰值是卫星峰值,这是由于电荷从外层电子壳层转移到能量较高的空轨道所致。O1s的XPS图谱如图4(c)所示。位于530.7 eV处的峰可归因于晶格氧(O2-)与Mn的结合,而位于531.9 eV处的峰可归因于表面吸附氧(O2)。

      图5为Mn2O3/γ-Al2O3的SEM图像、TEM图像及选区电子衍射(selected area electron diffraction, SAED)图像。Mn2O3主要在γ-Al2O3表面以球形颗粒形式存在,且均匀分散在γ- Al2O3表面。Mn2O3的粒径约为10~100 nm。表面高度分散的Mn2O3晶体可促进催化过程中VOCs分子与催化剂间的接触。这可能会促进催化反应,最终促进VOCs的降解[26]。Mn2O3晶体呈立方结构与XRD结果一致。通过选区电子衍射分析获得Mn2O3的米勒指数为(211)、(222)、(400)和(440),与XRD分析中提到的一致。在图5(c)中截取的区域可观察到图3(b)中Mn2p的XPS光谱中2个主峰对应的2个晶面:(211)和(222)晶面,其晶面间距分别为0.386 nm和0.272 nm。

    • 各降解条件下VOCs降解率如图6所示。甲苯、丙酮和乙酸乙酯的降解率均随SIE上升而上升,这与已有研究的结果一致。这是由于3种VOCs的分子电离能和分子结构不同所决定的[13]。对比有无催化剂条件下VOC单独降解与混合气中VOCs降解的降解率(具体数值见表1),可发现混合气中甲苯的降解率相较甲苯单独降解时的降解率有明显提升。当SIE为700 J ∙ L−1时,甲苯单独降解时降解率为61%,而混合气中的甲苯降解率为84.7%,提升率为38.9%;而混合气中乙酸乙酯的降解率相较乙酸乙酯单独降解时的降解率也有所提升,同等SIE下提升率约为12.6%。不同的是,混合气中丙酮的降解率相较丙酮单独降解时的降解率发生了明显下降。在SIE为700 J ∙ L−1条件下,丙酮单独降解时降解率为50.1%,而混合气中丙酮降解率为31.1%,降低了37.9%。其原因可能是3种VOCs的分解产物之间存在协同效应。当等离子体中存在多种VOCs时,会比单种VOCs产生更多活性物种,如自由基等。这可能会更有效地促进VOCs分解,从而导致相对容易降解的甲苯和乙酸乙酯的降解率得到提升[27]。然而,如图7所示,除了丙酮本身较难降解外,其还是甲苯降解的有机副产物之一[28]。在混合气中,甲苯的降解率相比甲苯单独降解有了极大提升的同时,也导致其有机副产物中丙酮体积分数上升,最终导致混合气中丙酮降解率出现下降。

      随着Mn2O3/γ-Al2O3催化剂的引入,无论是单独或是混合状态,各VOCs的降解率均得以显著提升。当SIE为700 J ∙ L−1时,甲苯、乙酸乙酯及丙酮单独降解的降解率分别为61%、59.6%及50.1%;而在催化剂作用下,甲苯、乙酸乙酯以及丙酮单独降解的降解率分别提升至72.6%、70.2%及58.4%,此时催化剂对其降解率的提升量分别为19%、17.9%及16.7%。而在混合气中,同等SIE下甲苯、乙酸乙酯及丙酮的降解率分别为84.7%、67.1%及31.1%;在催化剂作用下,混合气中甲苯降解率被提升至91.1%,提升率约为7.5%;乙酸乙酯降解率被提升至79.2%,提升率约为18%;而丙酮的降解率被提升至45.3%,提升率为45.8%。此外,根据同等SIE下混合气中各VOCs的降解率可发现3种VOCs在混合气中的降解难度存在较大差距,甲苯、乙酸乙酯及丙酮的降解难度呈降序排列。这与前面单独降解的情况一致,表明混合和催化剂均不会改变VOCs的降解难易程度,从而说明电离能和分子结构是影响降解效率的重要因素。而Mn2O3/γ-Al2O3催化剂对混合气中甲苯、乙酸乙酯及丙酮降解率的提升效果随VOCs降解难度的上升而更加显著。

    • 甲苯、丙酮、乙酸乙酯单独降解,以及混合VOCs降解过程中的臭氧产量如图8所示。在各种条件下,VOCs降解过程中的臭氧产量均随SIE上升呈先升后降趋势。如式(5)~(6)所示,臭氧的形成可分为2部分:高能电子与氧分子发生非弹性碰撞,形成氧原子;氧原子和氧分子在第三体的参与下生成臭氧[29]

      随着SIE上升,等离子体的电子密度和电子能量都随之增加,氧气分子与高能电子发生碰撞的几率随之上升,从而导致更多氧原子的产生,进而导致臭氧产量的上升。

      然而,随着SIE的进一步上升,反应器腔体的温度也随之升高。STANISLAV等[30]发现反应器腔体温度的上升会导致臭氧产量的降低。随着Mn2O3/γ-Al2O3催化剂的引入,各条件下臭氧产量均出现明显降低。MnOx催化剂对臭氧生成有明显抑制作用[31],在混合VOCs中,这一抑制作用同样表现出色,并未因待降解气体成分的改变而表现异常。同时,混合VOCs中的臭氧产量相较3种VOCs单独降解时均有微弱下降。混合VOCs中VOCs总浓度的上升,将使更多氧原子参与VOCs及其中间产物的降解,从而使参加与O2发应生成臭氧的氧原子减少,即臭氧浓度比单种VOC降解时更少[4]。另外,VOCs体积分数的上升也会导致降解中间产物的增多,部分臭氧在深度氧化这些中间产物的过程中被消耗。

    • 甲苯、丙酮、乙酸乙酯单独降解及混合VOCs降解的碳平衡情况如图9所示。随着SIE的上升,各条件下VOCs降解的碳平衡均呈上升趋势。此时,电场强度被增强,电子能量和密度也随之增强,进而提升了其与VOCs分子及VOCs分子降解中间产物碰撞的几率,从而导致碳平衡上升。此外,混合VOCs的碳平衡相较VOCs单独降解时的碳平衡均有一定程度下降。如,在SIE为700 J ∙ L−1时,甲苯单独降解的碳平衡为69.6%,丙酮单独降解的碳平衡为68.8%,乙酸乙酯单独降解的碳平衡为69.5%。而混合VOCs降解的碳平衡为67.1%,略有下降。相比VOCs单独降解,在混合VOCs中,由于VOCs体积分数的上升,部分等离子体放电产生的高能电子被用于甲苯、丙酮、乙酸乙酯分子的降解,被用于深度降解中间产物的高能电子数量则相应减少。最终导致混合VOCs降解的碳平衡较VOCs单独降解时有所降低。

      随着Mn2O3/γ-Al2O3催化剂的引入,各条件下VOCs降解的碳平衡均得以提升。臭氧在催化剂表面可分解为氧分子和具有强氧化性的氧原子。氧原子除了可降解等离子体阶段中未降解的一部分VOCs外,还可将等离子体降解VOCs的中间产物深度氧化为COx和H2O。最终导致催化剂引入后的碳平衡得以提升。

    • 计算结果表明,O3中的2个O—O键长分别为0.128 9 nm、0.128 8 nm,键角为:118.1°。与实验结果得到的0.127 8 nm、0.127 8 nm、116.8°相比,误差分别为0.84%、0.80%、1.13%。误差极小表明选取的计算参数进行结构优化后,得到的参数处于可接受范围。对Mn2O3催化剂吸附O3的情形进行DFT计算,从而对O—Mn原子连接的方式进行研究。首先将优化后的O3分子模型和Mn2O3(222)晶面模型进行合并,并将O3分子置于晶面中一个Mn原子的正上方(图10)。

      通过计算得到其吸附能为−16.64 eV。O3中的2个O原子分别吸附在了2个Mn原子上,其中O—Mn键的长度为0.192 2、0.215 0 nm。同时,3个O原子间的距离增加,分别为0.201 0 nm、0.194 4 nm。另一个O原子形成孤立离子形态,使其氧化性大大增强。在吸附的2个Mn原子附近Mn—O键分别从(0.185 9 nm、0.186 9 nm、0.187 0 nm)、(0.186 6 nm、0.193 0 nm、0.189 2 nm、0.211 0 nm)变为了(0.187 1 nm、0.196 9 nm、0.204 8 nm)、(0.194 5 nm、0.222 7 nm、0.202 8 nm、0.258 6 nm),其中1个O原子的距离为0.258 6 nm,可视为强氧化性的孤立氧原子。这也表明O3的吸附对Mn2O3晶面的表面结构产生了影响,吸附属于化学吸附。

      另外,本研究还计算了O3分子的马利肯电荷(Maliken charge),其吸附前后的电荷如表2所示。在O3吸附于Mn2O3晶面的过程中,3个原子分别获得1.03 e、1.14 e、1.09 e的电子。因此,为使电负性平衡,O原子将被作为电子供体,其氧化性大大增强。O3吸附于Mn2O3催化剂表面,对催化剂活性有很大影响。在反应过程中,O3吸附于Mn2O3的222切面中,通常是O原子与Mn原子进行相互连接,吸附于Mn原子表面,从而改变了原切面的结构,从而增强其催化作用。

    • 1) 对比单种VOCs与混合VOCs降解的降解率,可发现混合VOCs中甲苯的降解率相较单纯甲苯降解时的降解率有明显提升。乙酸乙酯的降解率相较单纯乙酸乙酯降解时的降解率略有提升。而丙酮的降解率相较单纯丙酮降解时的降解率却发生了明显下降。

      2) VOCs降解过程中的臭氧产量均随SIE上升呈先升后降的趋势。同时,混合VOCs中的臭氧产量相较3种VOCs单独降解时均有微弱下降。Mn2O3/γ-Al2O3催化剂对于臭氧的生成有明显抑制作用。

      3) 混合VOCs降解相较单种VOCs降解时的碳平衡均有一定程度下降。Mn2O3/γ-Al2O3催化剂的引入使得各条件下VOCs降解的碳平衡均得以提升。

      4) Mn2O3/γ-Al2O3催化剂在协同低温等离子体降解多组分VOCs气体过程中,对混合VOCs中甲苯、乙酸乙酯及丙酮降解率的提升效果随VOCs种类降解难度的上升而更显著。

      5) 通过DFT计算了O3在Mn2O3催化剂表面的吸附。O3吸附于Mn2O3的222切面中,通常是O原子与Mn原子进行相互连接,吸附于Mn原子表面,从而改变了原切面结构,增强了其催化作用。

    参考文献 (31)

返回顶部

目录

/

返回文章
返回