-
药物和个人护理用品(pharmaceuticals and personal care products, PPCPs)是一类新兴的环境污染物,正在广泛甚至越来越多地用于人类和兽医学。由于在人和动物体内的代谢不完全,部分PPCPs可能随着排泄物排出,最终进入废水处理厂,而传统的水处理工艺难以将该类物质彻底去除,大量残留的污染物可以逃逸到环境并且扩散到水体中,其检出浓度为ng·L−1级至μg·L−1级,且在水体中呈现出伪持久性[1]。PPCPs在环境中存在时对人类和水生物种的健康和安全已构成潜在威胁。其中,普里米酮(primidone, PRM) 被广泛用作抗癫痫药物,是一种典型的难降解PPCP,导致其在废水、地表水以及地下水中普遍检出。由于PRM在水环境中广泛存在且对人体健康具有潜在危害,故需要开发有效的深度处理工艺将其去除。
紫外/氯高级氧化技术因具有反应速率快、二次污染少、可以同时产生非选择性的羟基自由基(·OH)和选择性的活性氯物种(reactive chlorine species, RCS, 如Cl·、 ClO·和Cl2−·等)等优势受到了国内外学者的青睐[2]。当水体中的自由氯(free chlorine, FC)暴露于紫外线下时,除了形成·OH和Cl·(E0=2.47 V)[3]初级自由基外,他们还可以进一步与HOCl或OCl−反应生成次级自由基ClO·和Cl2−·(E0=2.20 V)[4]。与·OH相比,RCS受溶液的影响相对较小,且由于其选择性更强,在有机污染物去除时可优先与含有富电子基团有机化合物如酚类、苯胺类、烯烃和胺类反应[5],对PPCPs的去除表现出强大优势;且FC在UV254 nm处的量子产率和摩尔吸收系数均高于H2O2和过硫酸盐[6-7]。因此,紫外线与氯的结合可以产生协同效应,既能降低氧化剂投加量,又能提高污染物的降解率,被认为是一种极具潜力的高级氧化工艺。
因此,本研究以PRM为目标污染物,研究了紫外/氯体系下PRM的降解效果,系统考察了溶液pH、水体中常见阴离子、出水有机物(EfOM)和Fe3+等反应条件对PRM去除效果的影响,并探讨了PRM在紫外/氯体系中的降解机理和降解路径,以期为PPCPs废水的治理提供参考。
紫外/氯降解普里米酮的效能和机理
Degradation efficiency and mechanism of primidone by UV/chorine process
-
摘要: 选用普里米酮(primidone, PRM)为目标污染物,研究了紫外/氯高级氧化工艺对PRM的降解效能及反应机理,分别考察了pH、水体常见阴离子(Cl−、
${{\rm{HCO}}_3^{-} }$ 和${{\rm{NO}}_3^{-} }$ )和出水有机物(effluent organic matter, EfOM)对PRM降解效果的影响,并研究了PRM在类Fenton体系中的削减情况;同时,根据溶液总有机碳(TOC)的矿化、芳香性中间产物和小分子有机酸的生成,阐明了在紫外/氯体系中PRM的降解机理。结果表明,当PRM初始浓度为5 μmol·L−1、自由氯浓度为70 μmol·L−1、溶液pH为7时,反应10 min后,PRM的去除率为84%,ClO·对PRM的削减起主导作用,其次为·OH,而Cl2−·对PRM无氧化作用。当pH为6.2时污染物降解效果最佳。在一定范围内,Cl−几乎不影响PRM的降解,${{\rm{HCO}}_3^{-} }$ 因捕获自由基表现为抑制作用,${{\rm{NO}}_3^{-} }$ 因光解产生更多·OH进而加快PRM的分解。当Fe3+浓度为50 μmol·L−1时,PRM降解速率达到最大值0.84 min−1。2种EfOM的引入对PRM降解产生抑制作用,且憎水性EfOM的抑制作用更加显著。TOC矿化实验和降解路径分析结果表明,紫外/氯体系对PRM有一定的矿化作用且PRM首先通过连续的羟基化作用转化为苯甲酸等物质,同时母体化合物和中间体还可继续被氧化为小分子有机酸。PRM中的氮元素最终以${{\rm{NO}}_2^{-} }$ 和${{\rm{NH}}_4^{+} }$ 的形式存在,且在各种活性自由基的作用下${{\rm{NH}}_4^{+} }$ 可转化为${{\rm{NO}}_2^{-} }$ 。Abstract: Primidone (PRM) was selected as target contaminant in this study, and the degradation efficiency and reaction mechanism of PRM in UV/chlorine advanced oxidation process were investigated. The effects of solution pH, common anions (Cl−,${\rm{HCO}}_3^{-} $ and${\rm{NO}}_2^{-} $ ) and effluent organic matter (EfOM) on the degradation of PRM were studied, respectively. PRM decay in Fenton-like system was also studied. Meanwhile, the degradation mechanism of PRM in UV/chlorine system was identified based on TOC mineralization, the formation of aromatic intermediate products and small molecular acid. The results showed that when the initial concentrations of PRM and free chlorine were 5 μmol·L−1 and 70 μmol·L−1, respectively, and solution pH was 7, PRM removal rate was 84% in 10 min. ClO· played a leading role in PRM degradation, followed by ·OH, while Cl2−· did not participate in the conversion process. When solution pH was 6.2, the best degradation effect of pollutant occurred. The PRM degradation was almost unaffected by Cl− within a certain range, and it was inhibited by${\rm{HCO}}_3^{-} $ due to the radical scavenger, while the introduction of${\rm{NO}}_3^{-} $ greatly promoted PRM degradation because of the formation of additional •OH vis photolysis of${\rm{NO}}_2^{-} $ . When the Fe3+ concentration was 50 μmol·L−1, the PRM degradation rate reached the maximum value of 0.84 min−1. The introduction of two kinds of EfOM could inhibit the PRM degradation, and the hydrophobic EfOM played a more significant role. TOC mineralization experiment and degradation path analysis showed that UV/chlorine AOP had a certain mineralization effect on PRM, which first converted to benzoic acid and other substances through continuous hydroxylation, and the precursor and intermediates could continue to be oxidized into small molecular organic acids. It was found that the nitrogen elements in PRM molecular eventually existed in the form of${\rm{NO}}_2^{-} $ and${\rm{NH}}_4^{+} $ , and${\rm{NH}}_4^{+} $ could transform into${\rm{NO}}_2^{-} $ under the attack of various active radicals. -
-
[1] 秀措, 王尘辰, 吕永. 潮汕地区入海河流及水生生物中PPCPs分布特征及风险评估[J]. 环境科学, 2020, 41(10): 4514-4524. [2] 高泽晨, 张天阳, 黄飘怡. 应用紫外/氯组合工艺去除微污染原水中氨氮的特性研究[J]. 环境科学学报, 2019, 39(10): 3427-3433. [3] BEITZ T, BECHMANN W, MITZNER R. Investigations of reactions of selected azaarenes with radicals in water chlorine and bromine radicals[J]. Journal of Physical Chemistry A, 1998, 102(34): 6766-6771. doi: 10.1021/jp980655a [4] FANG J Y, FU Y, SHANG C. The roles of reactive species in micropollutant degradation in the UV/free chlorine system[J]. Environmental Science & Technology, 2014, 48(3): 1859-1868. [5] ZHANG X, HE J, XIAO S, et al. Elimination kinetics and detoxification mechanisms of microcystin-LR during UV/chlorine process[J]. Chemosphere, 2019, 214: 702-709. doi: 10.1016/j.chemosphere.2018.09.162 [6] SUN P, LEE W N, ZHANG R, et al. Degradation of deet and caffeine under UV/chlorine and simulated sunlight/chlorine conditions[J]. Environmental Science & Technology, 2016, 50(24): 13265-13273. [7] 骆靖宇, 李学艳, 李青松. 紫外活化过硫酸钠去除水体中的三氯卡班[J]. 中国环境科学, 2017, 37(9): 3324-3331. doi: 10.3969/j.issn.1000-6923.2017.09.015 [8] DREWES J E, CROUE J P. New approaches for structural characterization of organic matter in drinking water and wastewater effluents[J]. Water Supply, 2002, 2(2): 1-10. doi: 10.2166/ws.2002.0039 [9] BOLTON J R, STEFAN M I, SHAW P S, et al. Determination of the quantum yields of the potassium ferrioxalate and potassium iodide-iodate actinometers and a method for the calibration of radiometer detectors[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2011, 222(1): 166-169. doi: 10.1016/j.jphotochem.2011.05.017 [10] CHENG S, ZHANG X, YANG X, et al. The multiple role of bromide ion in ppcps degradation under UV/chlorine treatment[J]. Environmental Science & Technology, 2018, 52(4): 1806-1816. [11] BUXTON G V, GREENSTOCK C L, HELMAN W P. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (•OH/•O−) in squeous solution[J]. Journal of Physical and Chemical Reference Data, 1988, 17(2): 513-886. doi: 10.1063/1.555805 [12] MERTENS R, VONSONNTAG C. Photolysis(λ=254 nm) of tetrachloroethene in aqueous solution[J]. Photochemistry Photobiol Science, 1995, 85(1/2): 1-9. [13] TETON S. MELLOUKI A, LEBRAS G, et al. Rate constants for reactions of oh radicals with a seires asymmetrical ethers and tert-butyl alcohol[J]. International Chemistry, 1996, 28(4): 291-297. [14] PARKER K M, MITCH W A. Halogen radicals contribute to photooxidation in coastal and estuarine waters[J]. Parkar and Mitch, 2016, 113(21): 5868-5873. [15] WATTS M J, LINDEN K G. Chlorine photolysis and subsequent oh radical production during UV treatment of chlorinated water[J]. Water Research, 2007, 41(13): 2871-2878. doi: 10.1016/j.watres.2007.03.032 [16] 高睿, 杨潇, 冯天宇. 紫外/氯工艺中磺胺类药物的转化机理和毒性评价[J]. 环境化学, 2021, 40(5): 1319-1329. [17] DAUGHTON C G, TERNES T A. Pharmaceuticals and personal care products in the environment: Agents of subtle change?[J]. Enviromental Health Perspectives, 1999, 107(6): 907-938. [18] LIU X, LIANG C, LIU X. Occurrence and human health risk assessment of pharmaceuticals and personal care products in real agricultural systems with long-term reclaimed wastewater irrigation in Beijing, China[J]. Ecotoxicology and Environmental Safety, 2020, 190(1): 1-11. [19] KONG X, JIANG J, MA J, et al. Degradation of atrazine by UV/chlorine: Efficiency, influencing factors, and products[J]. Water Research, 2016, 90(1): 15-23. [20] ZHU Y, WU M, GAO N, et al. Degradation of phenacetin by the UV/chlorine advanced oxidation process: Kinetics, pathways, and toxicity evaluation[J]. Chemical Engineering Journal, 2018, 335(1): 520-529. [21] 罗从伟, 军 马, 进 江. UV/H2O2降解2, 4, 6/三氯苯甲醚动力学及产物研究[J]. 中国环境科学, 2017, 37(5): 1831-1837. doi: 10.3969/j.issn.1000-6923.2017.05.028 [22] WANG Y, COUET M, GUTIERREZ L, et al. Impact of dom source and character on the degradation of primidone by UV/chlorine: Reaction kinetics and disinfection by-product formation[J]. Water Research, 2020, 172: 115463. doi: 10.1016/j.watres.2019.115463 [23] BU L, ZHU N, LI C, et al. Susceptibility of atrazine photo-degradation in the presence of nitrate: Impact of wavelengths and significant role of reactive nitrogen species[J]. Journal of Hazardous Materials, 2020, 388: 121760. [24] RICHARD G. ZEPP J H, HEINZ B. Nitrate-induced photooxidation of trace organic chemicals in water[J]. Environmental Science & Technology, 1987, 21: 443-450. [25] WU Y T, BU L, DUAN X, et al. Mini review on the roles of nitrate/nitrite in advanced oxidation processes: Radicals transformation and products formation[J]. Journal of Cleaner Production, 2020, 273: 123065. doi: 10.1016/j.jclepro.2020.123065 [26] XU L, SUN Y, GAN L, et al. Utilization of photochemical circulation between NO3− and NO2− in water to degrade photoinert dimethyl phthalate: Influence of organic media and mechanism study[J]. Applied Catalysis B:Environmental, 2019, 259: 117958. doi: 10.1016/j.apcatb.2019.117958 [27] NETA P, HUIE R E, ROSS A B. Rate constants for reactions of inorganic radicals in aqueous solution[J]. Journal of Physical and Chemical Reference Data, 1988, 17(3): 1027-1284. doi: 10.1063/1.555808 [28] LI A, ZHANG Z, LI P, et al. Nitrogen dioxide radicals mediated mineralization of perfluorooctanoic acid in aqueous nitrate solution with UV irradiation[J]. Chemosphere, 2017, 188: 367-374. doi: 10.1016/j.chemosphere.2017.08.170 [29] HUANG Y, KONG M, WESTERMAN D, et al. Effects of HCO3- on degradation of toxic contaminants of emerging concern by UV/NO3-[J]. Environmental Science & Technology, 2018, 52(21): 12697-12707. [30] 王雪凝, 张炳亮, 潘丙才. 市政污水二级出水中溶解性有机质在紫外/氯处理过程中的转化特性[J]. 环境科学, 2021, 42(8): 1-18. [31] 赵刘柱, 敏吴, 朱延平. 紫外/氯降解非那西丁影响因素及机理研究[J]. 水处理技术, 2019, 45(3): 69-73. [32] SUN B, WANG Y, XIANG Y, et al. Influence of pre-ozonation of dom on micropollutant abatement by UV-based advanced oxidation processes[J]. Journal of Hazardous Materials, 2020, 391: 122201. doi: 10.1016/j.jhazmat.2020.122201 [33] YUAN Y, FENG L, XIE N, et al. Rapid photochemical decomposition of perfluorooctanoic acid mediated by a comprehensive effect of nitrogen dioxide radicals and Fe3+/Fe2+ redox cycle[J]. Journal of Hazardous Materials, 2020, 388: 121730. [34] DING X, GUTIERREZ L, CROUE J P, et al. Hydroxyl and sulfate radical-based oxidation of RhB dye in UV/H2O2 and UV/persulfate systems: Kinetics, mechanisms, and comparison[J]. Chemosphere, 2020, 253: 126655. doi: 10.1016/j.chemosphere.2020.126655 [35] ZHENG M, DANIELS K D, PARK M, et al. Attenuation of pharmaceutically active compounds in aqueous solution by UV/CaO2 process: Influencing factors, degradation mechanism and pathways[J]. Water Research, 2019, 164(1): 1-11. [36] FIGUEREDO M A, RODRIGUEZ E M, CHECA M, et al. Ozone-based advanced oxidation processes for primidone removal in water using simulated solar radiation and TiO2 or WO3 as photocatalyst[J]. Molecules, 2019, 24(9): 1728-1745. doi: 10.3390/molecules24091728 [37] LIU Y, YAN S, LIAN L, et al. Assessing the contribution of hydroxylation species in the photochemical transformation of primidone (pharmaceutical)[J]. Science of the Total Environment, 2019, 696: 133826. doi: 10.1016/j.scitotenv.2019.133826