危化品道路运输次生突发环境事件特征分析及防范对策

陈思莉, 张胜, 潘睿, 邴永鑫, 黄大伟, 张政科, 虢清伟. 危化品道路运输次生突发环境事件特征分析及防范对策[J]. 环境工程学报, 2021, 15(10): 3193-3198. doi: 10.12030/j.cjee.202011061
引用本文: 陈思莉, 张胜, 潘睿, 邴永鑫, 黄大伟, 张政科, 虢清伟. 危化品道路运输次生突发环境事件特征分析及防范对策[J]. 环境工程学报, 2021, 15(10): 3193-3198. doi: 10.12030/j.cjee.202011061
CHEN Sili, ZHANG Sheng, PAN Rui, BING Yongxin, HUANG Dawei, ZHANG Zhengke, GUO Qingwei. Characteristic analysis and countermeasure suggestions on secondary environmental emergencies in road transportation of hazardous chemicals[J]. Chinese Journal of Environmental Engineering, 2021, 15(10): 3193-3198. doi: 10.12030/j.cjee.202011061
Citation: CHEN Sili, ZHANG Sheng, PAN Rui, BING Yongxin, HUANG Dawei, ZHANG Zhengke, GUO Qingwei. Characteristic analysis and countermeasure suggestions on secondary environmental emergencies in road transportation of hazardous chemicals[J]. Chinese Journal of Environmental Engineering, 2021, 15(10): 3193-3198. doi: 10.12030/j.cjee.202011061

危化品道路运输次生突发环境事件特征分析及防范对策

    作者简介: 陈思莉(1982—),女,硕士,正高级工程师。研究方向:突发环境事件应急处置技术开发、水处理研究与设计。E-mail:chensili@scies.org
    通讯作者: 虢清伟(1974—),男,博士,正高级工程师。研究方向:环境应急处置技术、环境风险管理、水污染治理。E-mail:guoqingwei@scies.org
  • 基金项目:
    中央级公益性科研院所基本科研业务专项(PM-zx703-202002-079);广东省省级科技计划项目(2016B020240007)
  • 中图分类号: X507

Characteristic analysis and countermeasure suggestions on secondary environmental emergencies in road transportation of hazardous chemicals

    Corresponding author: GUO Qingwei, guoqingwei@scies.org
  • 摘要: 针对近年来我国交通事故次生突发环境事件呈上升趋势,在分析总结我国近10年的交通事故次生突发环境事件基础上,聚焦目前危化品道路运输风险底数不清、缺乏环境风险防控工程体系和有效技术支撑以及部门联动协作等主要问题,为提高交通运输次生突发环境事件的防控能力,基于环境敏感受体等因素,提出了相关对策建议。具体对策建议包括:通过建立危化品运输道路环境风险评估体系,识别全国重大环境风险路段,摸清风险底数;推广“南阳实践”经验,消除或减轻事件影响;加强和完善部门沟通协作机制;建立健全危化品道路运输应急处置体系,提升应急处置能力。
  • 人工湿地技术是一项通过模拟或强化生态系统的结构和功能,利用植物 、微生物及动物等的共同作用进行水污染治理和生态修复的水质净化工程技术,已被广泛应用于地表水的保护以及多种污废水,如生活污水、农业废水、工业废水、酸性矿山排水、城市和公路径流的脱氮处理[1-3]。其中,垂直流人工湿地,由于具有较好的有机物和氨氮去除能力[4-7],并具有占地面积小的优势,在实际工程中常用于处理含氮量较高的污水[8-9]。目前国家对于农村生活污水的排放标准主要考察COD、氨氮和总氮等指标,没有对硝态氮作出明确要求,所以在使用传统非饱和垂直流人工湿地时也是主要考虑强化其对氨氮的硝化能力,忽略了对其反硝化能力的提升,从而导致其反硝能力普遍较弱[10-13]

    微生物的硝化和反硝化作用是人工湿地脱氮的主要途径,但二者对氧的需求不同[14]。一般来说,参与硝化过程的功能微生物对氧的需求较高,大多数为好氧或兼性好氧微生物,而参与反硝化过程的功能微生物多数为兼性厌氧微生物。因此,当水中溶解氧(dissolved oxygen,DO)<1~2 mg·L−1时硝化作用会减小, DO>0.2 mg·L−1 反硝化作用受到抑制[15-16]。大多数传统垂直流人工湿地系统在运行过程中是处于水不饱和状态,大气复氧能力强,有利于硝化作用进行但不利于反硝化作用进行。因此,为了弥补传统垂直流人工湿地反硝化能力差的问题,本研究对传统垂直流人工湿地系统进行了结构改造,将系统构建成分内、外两层的多氧态垂直流人工湿地,采用内层底部连续进水,在内层形成水上行的饱和状态和厌氧环境,促进生活污水中的高浓度有机化合物进行厌氧降解,使污水中有机氮通过氨化反应转化为氨氮[17]。同时,在外层形成水下行的部分饱和状态,使系统(尤其是系统外层)中DO的分布呈持续的动态变化状态(多氧态),为硝化和反硝化过程的进行提供适宜的DO环境,在系统外层上部的非饱和区利用硝化反应将氨氮转化为硝态氮,在系统外层下部的饱和区利用反硝化反应将硝态氮转化为氮气,从而实现在同一湿地系统中将污水中的有机氮经氨化降解、再硝化、反硝化彻底去除的目的。此外,本研究对该湿地系统在不同水饱和比、不同水力停留时间(hydraulic retention time,HRT)条件下的污染物去除效率、基质中微生物群落结构的演变规律以及氮循环功能基因的分布特征进行了分析和比较,可为多氧态垂直流人工湿地系统的推广和应用提供参考。

    本实验采用自行设计的多氧态垂直流人工湿地系统,实验装置设置在桂林理工大学污水处理站内。系统由配水箱、蠕动泵和垂直流人工湿地3部分组成如图1所示。垂直流人工湿地部分由内外两层的PVC圆柱体建成,内层直径为16 cm,外层直径为30 cm;内层高度为0.7 m,填充高度为0.6 m;外层高度0.8 m,填充高度为0.7 m,内外层填充体积比为1:3。进水通过蠕动泵和布水装置均匀的从内层底部自下而上的流过内层床体,出水由与外层底部的出水口相连的软管排出。根据虹吸原理,通过调节出水软管高度来控制外层床体的饱和区水位,以外层饱和区水位高度与总高度比值来表示系统外层水饱和比。

    图 1  多氧态垂直流人工湿地系统及采样位点示意图
    Figure 1.  Schematic diagram of the vertical flow constructed wetland system with multi-aerobic and anerobic zones and sampling sites

    湿地系统的内、外层分别采用粒径8~10 mm的石英砂颗粒和粒径5~8 mm的焦炭颗粒进行填充。内外层主体填料的上下两端各填充厚度为5 cm的鹅卵石,作为进水区和集水区,以截留悬浮物防止堵塞。内外层的填料层上种植的植物为美人蕉。填料中在内层距底部20 cm(a点)和40 cm(b点)处,以及外层距底部25 cm(c点)和55 cm(d点)处分别埋有直径8 mm的4根采样管,便于水样采集。

    实验进水取自桂林理工大学污水站的生活污水,污水中COD、NH4+-N、NO3-N的平均质量浓度分别为(105.60±17.36)、(51.54±14.35)、(0.78±0.45) mg·L−1。实验正式开始前,系统先在HRT为48 h的条件下连续进水1个月进行预培养,使系统运行达到稳定。

    为确保系统外层水位不会影响最佳HRT的确定,正式实验以系统外层水饱和比(既外层水位高度与外层填料高度的比值)为0的条件作为对照,比较HRT 分别为6、12、24、48 h时对污染物(COD和NH4+-N)的净化效果,来确定系统污染物去除的最佳HRT。再在最佳HRT条件下,比较系统外层水饱和比分别为1、3∶4、1∶2、1∶3、0时,对污染物的去除效果,确定最优的系统外层水饱和比;同时,分析该水饱和比条件下湿地系统内部的饱和区和非饱和区DO、ORP分布特征,确定系统的多氧态形成情况。最后,在最佳外层水饱和比和最佳HRT条件下,控制进水C/N为7:1,测定系统对高负荷生活污水的污染物净化效率,分析比较系统填料微生物群落结构、以及反硝化功能基因的丰度变化情况,分析其促进污染物去除的机理。

    1)水样采集与分析。水样采集位点如图1所示为内层20 cm(a点)、内层40 cm(b点)、内部顶层(i70 cm)、外层25 cm(c点)和外层55 cm(d点),分别标记为内层20、内层40、内层70、外层25、外层55。内、外层填料中不同高度的水样使用洗耳球通过预埋的采样管吸取,i70 cm的水样采用50 mL注射器直接抽取,出水水样直接从排水管口直接收集。每个点水样采集至少150 mL。针对特定条件运行周期,每2 d采集1次,水样采集后立即带回实验室进行分析。分析的指标包括:化学需氧量(COD)、氨氮(NH4+-N)和硝态氮(NO3-N)。测试方法分别为:重铬酸钾法(GB11914-89),纳氏试剂分光光度法(GB7479-87)和紫外分光光度法(HJ-T346-2007)。水样采集的同时,以便携式YSI多参数水质分析仪在采样现场测定各采样点的DO、氧化还原电位(oxidation-reduction potential,ORP)。

    2)微生物样品采集与分析。实验末期,控制系统外层水饱和比为1:2,进水C/N为7:1,连续运行两周。期间除了水样采集,在实验结束后,再在如图1所示的a点、b点、c点和d点4个水样采集点中,各取3个基质样品,将其均匀混合后取10 g作为该采样点的基质微生物样品,其中对b点和d点处样品进行氮循环功能基因定量PCR分析。样品采集后,立即送样至北京奥维森生物科技有限公司进行DNA提取,微生物多样性检测和氮循环功能基因定量PCR分析。其中,DNA 提取方法参照 DNA Kit (Omega Bio-tek, Norcross, GA, U.S.)试剂盒说明书。微生物多样性检测选取细菌16S rDNA V3~V4区,利用 Illumina Miseq PE300高通量测序平台测序。氮循环功能基因定量PCR分析选择氨氧化作用的三种菌(AOA,AOB与厌氧氨氧化 (Anammox) 菌和反硝化菌)的功能基因进行研究。定性和定量PCR时,AOA与AOB的扩增都采用功能基因氨单加氧酶amoA的引物,Anammox菌的扩增采用Anammox 16s-RNA;硝化检测功能基因nxrA、nxrB;反硝化菌检测功能基因narG、nirS和nirK。所有引物的合成和数据分析处理均由北京奥维森生物科技有限公司完成。

    通过改变可伸缩U型管的出水高度,控制系统外层水饱和比为0,比较不同HRT条件下系统对污染物COD和NH4+-N的净化效果,此阶段进水COD为140.62~219.53 mg·L−1,进水NH4+-N在32.36~65.65 mg·L−1。由图2可以看到,随着HRT从6 h增加到48 h,湿地系统的COD和NH4+-N的去除率逐渐从76.03%和88.28%(6 h)增加到95.76%和98.38%(24 h),并在48 h时达到96.64%和99.04%。

    图 2  不同HRT条件下多氧态湿地系统对COD和NH4+-N的去除效率
    Figure 2.  Removal rates of COD and NH4+-N by the vertical flow constructed wetland system with multi-aerobic and anerobic zones at different HRT

    在HRT为6 h和12 h时,系统对污染物的去除率较低,这可能在于停留时间较短,系统的水力冲刷大,污水在系统填料间的停留时间较短,不能充分被微生物转化、降解。而当HRT增大为24 h和48 h时,系统对污染物的去除率逐渐升高并达到最佳状态,对COD和NH4+-N的去除率可达到90%以上,可见,HRT的变化可显著影响人工湿地的污染物净化效果。分别核算HRT为24 h和48 h时的单位面积氨氮负荷去除量可得,24 h时为8.22 g·(m2·d)−1,48 h时为5.11 g·(m2·d)−1,则系统在24 h时对氨氮的去除效能最好,同时从经济性上考虑,过长的HRT可能会造成系统处理能力的浪费。因此系统HRT采用24 h时长,既可以保证污染物的最好净化效果,又能充分发挥系统的处理能力,因此后续的实验均在HRT为24 h条件下进行。

    1)多氧态湿地系统的最优水饱和比。在HRT为 24 h条件下,通过改变可伸缩U型管的出水高度,控制系统外层水饱和比分别为1、3:4、1:2、1:3、0,比较系统在不同水饱和比条件下对COD和NH4+-N的去除效果,结果如图3(a)和图3(b)所示。

    图 3  不同水饱和比条件下多氧态湿地系统对COD和NH4+-N的去除效率
    Figure 3.  Removal rates of COD and NH4+-N by vertical flow constructed wetland system with multi-aerobic and anerobic zones at different water saturation ratios

    方差分析结果表明,系统外层水饱和比对COD和NH4+-N的去除均有显著性影响(P<0.05)。水饱和比为0时COD的去除效率最高,约为96%;水饱和比为1∶2、1∶3和0时,NH4+-N的去除效率均在98%以上,故分别核算系统外层水饱和比为1、3∶4、1∶2、1∶3和0时的单位面积氨氮负荷去除量为6.78、18.76、21.30、16.71和8.22 g·(m2·d)−1,可得本系统在外层水饱和比为1∶2时对氨氮的去除效能最好。总的来看,系统外层水饱和比为1∶2时,系统对COD和NH4+-N可以达到相对较好的净化效果。

    2)多氧态湿地系统的DO及ORP分布特征。DO是影响污水有机物去除效率的重要因素,ORP则可综合DO、有机物质及微生物活性等指标来反映系统中的氧化还原状态[18]。当外层水饱和比为1∶2时,湿地系统DO及ORP 分布特征如图4(a)所示。系统内层饱和区的DO普遍较低(0.2~0.7 mg·L−1),基本处于厌氧状态,ORP呈由内层底部(20 cm)的−143.04 mV向顶部(70 cm) 提升至−124.1 mV,呈逐渐升高的趋势。系统外层分为水饱和区和非饱和区,但二者的DO和ORP均显著高于内层。其中,外层的DO由底部向顶部同样呈现由低向高的逐渐变化,且表现出好氧、缺氧和厌氧区的区分,其中c点处DO值为0.7~1.7 mg·L−1,处于缺氧状态;d点DO值在2.1~2.5 mg·L−1,处于好氧状态。同时,外层中的ORP随着深度的增加呈下降趋势,−49.10 mV(d点)降到−68.80 mV(c点)。以上结果表明,本研究采用的双层垂直流人工湿地设计,可通过控制系统外层水饱和比的高低,调节系统的饱和区和非饱和区的占比,促使系统尤其是系统外层的DO和ORP分布呈持续的动态变化状态,实现系统多氧态状态的构建。

    图 4  多氧态湿地系统DO和ORP的分布特征及主要位置污染物质量浓度变化
    Figure 4.  Distribution characteristics of DO and ORP in vertical flow constructed wetland system with multi-aerobic and anerobic zones and changes in pollutant mass concentrations at major locations

    垂直流人工湿地中有机物的去除主要是通过微生物的氧化,对NH4+-N的净化主要是通过微生物的硝化作用。由图3可见,当外层的水饱和比为0时,有机物的去除效率最高;系统外层水饱和比≤1:2时,NH4+-N的去除效率即可达到98%以上。由图4(b)可以看出,i70 cm处的NH4+-N质量浓度高于进水。这可能是因为系统内层发生的厌氧发酵使得污水中的有机氮在微生物作用下转化生成NH4+-N,同时部分有机物也被降解去除,使COD的去除率接近70%,之后随着外层非饱和区利用大气的复氧作用使得水中DO含量上升,为有机物的进一步氧化分解及NH4+-N的硝化去除创造了条件,表现为出水中NO3-N质量浓度上升,而COD和NH4+-N质量浓度持续下降。

    3)多氧态湿地系统中氨氮的转化。传统垂直流人工湿地中,部分饱和的垂直流人工湿地的反硝化效果明显高于不饱和垂直流人工湿地[19]。因此,在外层水饱和比分别为0和1:2的条件下,对比系统进、出水的NH4+-N和NO3-N的浓度得到如图5所示结果。可以看出,系统外层水饱和比为0时,进水中的NH4+-N几乎全部转化成NO3-N,且出水中NH4+-N和NO3-N的含量与进水中的基本相当,说明此条件下,进水中NH4+-N质量浓度的降低主要是依靠硝化作用,但产生的NO3-N 在系统中没有进一步的转化。这可能由于此条件下系统由外层底部直接出水,非饱和区占比大,所以NH4+-N的硝化作用彻底,绝大部分均转化成了NO3-N 。但由于决定NO3-N 去除的反硝化阶段缺失,因此系统总的脱氮效率较低。而当系统外层的水饱和比为1∶2时,外层形成了一定的饱和区,使其底部呈现缺氧状态,而顶部仍然是好氧状态,整个系统形成厌氧-好氧-缺氧的多氧态,进水中的NH4+-N可以通过硝化作用去除,其生成的NO3-N 也能够在外层下部饱和区的缺氧环境中发生反硝化作用生成N2去除,所以该条件下出水的NO3-N 含量更低,同时NH4+-N+NO3-N的含量也显著下降,仅为系统外层水饱和比为0时的57%,可大大提高系统总的脱氮效率。因此,与传统非饱和垂直流湿地相比,多氧态湿地系统的不仅保留了其原本的硝化能力,还提升了一定的反硝化能力[1920]

    图 5  不同外层水饱和比下湿地系统中氮的转化情况
    Figure 5.  Nitrogen transformations in wetland systems at different outer water saturation ratios

    控制湿地系统外层水饱和比为1:2,进水C/N为7:1(COD为350.23~381.46 mg·L−1、NH4+-N为50.23~60.57 mg·L−1),测定系统对COD和NH4+-N的较高有机负荷污水的净化效率。如图6所示,多氧态湿地系统对污水中COD的去除率可达91.92%,而NH4+-N去除率也可达到90.53%。说明本系统具有良好的有机物降解能力,能够去除较高负荷的有机污染物,同时对于高氨氮污水也有较高的处理能力。

    图 6  进水C/N为7:1时系统对COD和NH4+-N的去除效率
    Figure 6.  Removal rates of COD and NH4+-N by the system at an inlet C/N of 7:1

    以特定功能基因或特定的16S-RNA片段作为分子标记,采用定量 PCR(Real-time PCR)来测定特定基因片段的相对数量,可以对样品中特定功能微生物数量进行定量分析[21]。本研究选择的分子标记:氨单加氧酶amoA、亚硝酸盐氧化酶nxrA和nxrB、硝酸还原酶narG、亚硝酸还原酶nirS和nirK 是参与自然界氮循环过程的关键催化酶,其分别在氨的好氧氧化、亚硝酸盐氧化、亚硝酸盐还原、硝酸盐还原过程中起到重要作用;Anammox菌介导的厌氧氨氧化过程,可直接在缺氧条件下以NH4+为电子供体,亚硝酸盐为电子受体,产生N2

    图7(a)可知,多氧态湿地系统amoA功能基因主要来源于AOA,且外层中amoA功能基因的数量显著高于内层,说明系统的好氧氨氧化作用主要发生外层,且主要由好氧氨氧化细菌驱动[2223]。与之类似, 通过图7(b)可看出,催化亚硝酸盐氧化的重要功能基因nxr在外层中的含量比内层高,也说明系统外层中的硝化作用更强[24]。因此,由图7(a)和图7(b)可以表明外层营造的好氧环境为硝化细菌的生存和繁殖提供了适宜的环境。

    图 7  氮循环功能基因在多氧态湿地系统内、外层的丰度
    Figure 7.  Abundance of functional nitrogen cycling genes in the inner and outer layers of the vertical flow constructed wetland system with multi-aerobic and anerobic zones

    此外,系统中还同时存在一定量的Anammox菌,其中内层石英砂的丰度为2.91×109 拷贝数·g−1,外层焦炭中的丰度为7.86×108 拷贝数·g−1,与AOA的数量基本持平,但主要分布在系统内层饱和区,这与Anammox菌对氧的需求适应。Anammox菌能够在厌氧/缺氧的条件下,直接以NH4+为电子供体,NO2为电子受体,产生N2[25]。虽然这一过程的存在,可能使亚硝酸盐氧化细菌(NOB)的因为底物竞争而生长受抑,使nxrA、nxrB基因的数量较低(图7(b)),但Anammox过程的存在,可以使NH4+直接转化为N2而去除,对提高系统总氮的去除效率是非常有利的。

    narG编码的硝酸盐还原酶参与催化反硝化过程的第1步,促使硝酸盐向亚硝酸盐的转化,而nirK和nirS则是编码反硝化过程第2步中催化亚硝酸盐还原酶的关键功能基因[2627]。由图7(c)和(d)可知,narG、nirK和nirS在系统内、外层中均有分布,但在系统内层中的含量均比外层中的少。这可能与外层中的NO3-N含量远大于内层有关,也表明系统多氧态的形成,可以促使反硝化作用在外层进行,提升系统总的氮去除能力,这也与前期的研究结果(图5)相符合。

    总的来看,本湿地系统构建形成的“多氧态”状态,可以在保持传统垂直流人工湿地系统水流特点和优势的同时,为对氧具有不同需求的氮循环功能微生物提供适宜的微生态环境,强化其生物转化作用(包括硝化、反硝化以及Anammox作用),从而提高系统的氮去除效率。

    1)门水平微生物群落结构。对多氧态湿地系统内外层共4个基质样品进行微生物多样性检测分析,并对所有OTU系列进行物种注释,共得到60多种不同的细菌门。如图8所示,微生物数量最多的前3个门依次为Proteobacteria(变形菌门) 、Chloroflexi(绿弯菌门)和Bacteroidetes(拟杆菌门),这3种菌门也被广泛报道存在于水处理反应器中[28-30]

    图 8  多氧态湿地系统4个基质样品中微生物群落丰度图(门水平)
    Figure 8.  Abundance map of microbial communities in four substrate samples from the vertical flow constructed wetland system with multi-aerobic and anerobic zones (at phylum level)

    从门水平看,Proteobacteria在4个样本中均为相对丰度最高的优势种,这与ANSOLA等[31]在人工湿地中的研究结果一致。Proteobacteria属于革兰氏阴性细菌,其物种和遗传多样性极为丰富,是COD去除和脱氮过程的重要贡献者。本研究结果表明,Proteobacteria在系统外层所占的比例(平均55.6%)比内层的(平均25.8%)高(图8),说明湿地系统多氧态的构建可以促使Proteobacteria大量繁殖,从而可能提升系统的污染物去除能力增加。

    此外, 4个样本中ChloroflexiBacteroidetes的相对丰度仅次于Proteobacteria,但二者在系统内层所占的比例(平均21.9%)比外层的(平均6.6%)大(图8),这与ChloroflexiBacteroidetes均属于兼性厌氧微生物,对氧的需求较低有关。已有研究表明这两类细菌都是有机物的主要降解者,能够降解复杂的有机物[32]。因此,ChloroflexiBacteroidetes在内层的广泛存在,可充分发挥其对复杂有机物的降解能力,有利于系统对有机污染物的去除。同时,多氧态湿地系统中丰度较大的还有Caldiserica、Actinobacteria、Firmicutes、Acidobacteria等,他们在有机物的矿化和氮的固定等方面发挥着重要作用[33]

    2)属水平微生物群落结构。以属为单位对多氧态湿地系统的微生物群落结构进行分析得到图9。系统内层的优势菌属为Caldisericum、Longilinea、Smithella、Leptolinea、Syntrophorhabdus等厌氧菌,他们均与有机物的代谢有关,其中,LongilineaLeptolinea对多糖具有良好的降解能力[34]CaldisericumSyntrophorhabdus是工业废水生物处理系统中常见菌种,有助于有机物的降解,并且Syntrophorhabdus是厌氧生态系统中的丰富细菌主要降解芳香族化合物[35]。他们在样品总丰度中的占比分别为37.74%(内层20)、34.70%(内层40)、1.09%(外层25)、0.14%(外层55),且在内层的相对丰度远大于在外层的。可以推测,系统的有机物降解过程主要在系统内层发生。

    图 9  属水平上多氧态湿地系统4个基质样品中微生物群落丰度
    Figure 9.  Abundance of microbial communities in four substrate samples from the vertical flow constructed wetland system with multi-aerobic and anerobic zones at genus level

    系统的外层优势菌属为Rhodanobacter、Nitrospira等。其中,Rhodanobacter属变形菌门γ-变形菌纲的黄色单胞菌科[36]。该菌在好氧的土壤表层发现并分离,具有反硝化能力[37-40],它在多氧态湿地系统的外层中大量出现,可促进反硝化反应的进行。而外层的另一优势菌Nitrospira是亚硝酸盐氧化细菌的主要菌属,主要分布在外层上部的好氧区域,丰度达2.94%。作为硝化过程中的关键菌属,它可将水体中的亚硝酸盐氧化成硝酸盐[41],其在系统外层的优势存在,也很好的解释了为何多氧态湿地系统的外层具有较强的硝化能力。

    3)多氧态湿地系统促进氮去除的机理。综上所述,本实验所构建的多氧态垂直流人工湿地,可通过调节外层水饱和比,在保证系统有机物去除效率的同时,提高系统总的脱氮效率,这与其特殊的分层结构有关。首先,多氧态垂直流人工湿地分为内外两层,当外层不饱和比为0时,其内层与传统的多氧态垂直流人工湿地相似,出水中氮主要以NO3-N为主,NH4+-N 和 NO3-N的含量与进水相比,降低仅为5%左右。而当外层不饱和比大于0时,系统的外层被由下到上被分成了饱和区和非饱和区,这与内层在完全饱和状态下形成的单一缺氧甚至是厌氧的环境相比,外层由底部向顶部DO和ORP均逐渐上升,形成同时兼备厌氧-缺氧-好氧环境的结构特点, 这使得系统外层中参与反硝化和硝化过程的微生物如RhodanobacterNitrospira等均得到优势生长(图9),系统的外层硝化和反硝化功能也比内层得到强化(图7),从而使系统的氮去除能力得到提升(图5)。

    1)通过调节系统外层水饱和比,多氧态湿地系统的内层呈饱和状态,DO比较低,属于缺氧厌氧区;外层上部非饱和区为好氧区,底部饱和区为厌氧/缺氧区,能够形成由厌(缺)氧到好氧的氧化还原分区。

    2)多氧态湿地系统对NH4+-N和COD均有较好的去除效果,而当外层水饱和比为1:2,HRT为24 h时,多氧态湿地系统对污染物的净化效果最好。

    3)多氧态湿地系统氮循环功能微生物的数量在外层中的分布高于内层,对系统的硝化和反硝化功能均有促进作用,可提升系统总的氮去除效率。

    4)多氧态湿地系统内、外层的微生物群落结构组成具有显著差异。在门水平上Proteobacteria、Chloroflexi和Bacteroidetes的相对丰度较大,其中Proteobacteria在系统外层的丰度较大,而ChloroflexiBacteroidetes在内层丰度较大。属水平上,系统外层与内层的优势菌属也不同,外层的优势菌属为Rhodanobacter,属于反硝化菌;内层的优势菌属为Caldisericum、Longilinea等厌氧菌,有助于有机物的降解。

  • 图 1  2010—2019年交通事故次生突发环境事件统计

    Figure 1.  Statistics on the number of secondary environmental emergencies in traffic accidents from 2010 to 2019

    图 2  2010—2019年交通事故次生突发环境事件较多的省(自治区、直辖市)统计

    Figure 2.  Statistics of provinces with high numbers of traffic accidents and secondary environmental emergencies from 2010 to 2019

    图 3  环境风险评估程序图

    Figure 3.  Diagram of the environmental risk assessment procedure

    表 1  2010—2019年全国突发环境事件危化品种类及数量统计

    Table 1.  Statistics on hazardous chemicals types and quantity of environmental emergencies in China from 2010 to 2019

    序号特征污染物数量/起占比/%
    1汽油、柴油、原油、燃料油、润滑油、焦化油等石油类6222
    2盐酸、硫酸、硝酸、氢氟酸等酸类4617
    3苯乙烯、苯、粗苯、苯酚、甲苯、二甲苯等苯系物4316
    4甲醇176
    5其他10739
    合计275100
    序号特征污染物数量/起占比/%
    1汽油、柴油、原油、燃料油、润滑油、焦化油等石油类6222
    2盐酸、硫酸、硝酸、氢氟酸等酸类4617
    3苯乙烯、苯、粗苯、苯酚、甲苯、二甲苯等苯系物4316
    4甲醇176
    5其他10739
    合计275100
    下载: 导出CSV
  • [1] 马晓琨. 中国突发环境事件时空分布及外部因素相关性研究[D]. 北京: 中国科学院大学, 2015.
    [2] 张春艳, 曹钧, 茆文革. 危化品道路运输安全风险分析及事故防控对策研究[J]. 化工管理, 2020(34): 75-77. doi: 10.3969/j.issn.1008-4800.2020.34.036
    [3] 张茂鑫. 危化品运输车辆单元风险预警系统开发[D]. 北京: 中国地质大学(北京), 2019.
    [4] 曹建. 危化品槽罐车公路运输事故情景构建、演化模拟与安全控制研究[D]. 湘潭: 湖南科技大学, 2020.
    [5] 张蒙. 危化品道路运输事故后果分析与风险评价模型研究[D]. 北京: 首都经济贸易大学, 2019.
    [6] 胡伟超, 徐炅旸, 傅挺, 等, 危险化学品道路运输路线安全风险量化评估体系[C]//第十三届中国智能交通年会优秀论文集, 2018: 189-197.
    [7] 卫星, 李自生, 万聪颖. 利用地理信息评估危化品道路运输环境风险[J]. 化工管理, 2018(22): 84-86. doi: 10.3969/j.issn.1008-4800.2018.22.053
    [8] 胡燕倩. 我国危化品物流发展的现状、原因及策略分析: 基于发达国家危险品运输管理经验的借鉴[J]. 对外经贸实务, 2013(5): 90-92.
    [9] 罗俊仪, 龚标, 王长君. 我国危险化学品道路运输现状[J]. 道路交通管理, 2005(11): 6-8.
    [10] 卜全民, 童星. 我国危险化学品道路运输的现状与对策研究[J]. 工业安全与环保, 2012, 38(4): 90-93. doi: 10.3969/j.issn.1001-425X.2012.04.028
    [11] RAO RAJESHWAR K, RAO VENKATESWAR S, CHARY V. Estimation of risk indices of chemicals during transportation[J]. Process Safety Progress, 2004, 23(2): 149-154. doi: 10.1002/prs.10012
    [12] 任常兴, 吴宗之. 危险品道路运输风险分级指数法研究[J]. 安全与环境学报, 2006, 6(4): 126-129. doi: 10.3969/j.issn.1009-6094.2006.04.031
    [13] 刘琳琳. 基于物联网的危化品运输泄漏事故仿真系统[D]. 大连: 大连理工大学, 2012.
    [14] 姜学鹏, 徐志胜, 冷彬, 等. 危化品公路运输事故研究现状及其防灾对策[J]. 中国公共安全(学术版), 2006(3): 55-58.
    [15] 吴宗之, 孙猛. 200起危险化学品公路运输事故的统计分析及对策研究[J]. 中国安全生产科学技术, 2006, 2(2): 3-8.
    [16] 薛丽洋. 浅谈道路运输环境安全管理工作的认识与建议[J]. 甘肃科技, 2018, 34(21): 104-105. doi: 10.3969/j.issn.1000-0952.2018.21.039
    [17] 中华人民共和国生态环境部. 地表水环境质量标准[EB/OL]. [2020-11-10]. http://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/shjbh/shjzlbz/200206/t20020601_66497.shtml.
  • 加载中
图( 3) 表( 1)
计量
  • 文章访问数:  7475
  • HTML全文浏览数:  7475
  • PDF下载数:  151
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-11-10
  • 录用日期:  2021-06-13
  • 刊出日期:  2021-10-10
陈思莉, 张胜, 潘睿, 邴永鑫, 黄大伟, 张政科, 虢清伟. 危化品道路运输次生突发环境事件特征分析及防范对策[J]. 环境工程学报, 2021, 15(10): 3193-3198. doi: 10.12030/j.cjee.202011061
引用本文: 陈思莉, 张胜, 潘睿, 邴永鑫, 黄大伟, 张政科, 虢清伟. 危化品道路运输次生突发环境事件特征分析及防范对策[J]. 环境工程学报, 2021, 15(10): 3193-3198. doi: 10.12030/j.cjee.202011061
CHEN Sili, ZHANG Sheng, PAN Rui, BING Yongxin, HUANG Dawei, ZHANG Zhengke, GUO Qingwei. Characteristic analysis and countermeasure suggestions on secondary environmental emergencies in road transportation of hazardous chemicals[J]. Chinese Journal of Environmental Engineering, 2021, 15(10): 3193-3198. doi: 10.12030/j.cjee.202011061
Citation: CHEN Sili, ZHANG Sheng, PAN Rui, BING Yongxin, HUANG Dawei, ZHANG Zhengke, GUO Qingwei. Characteristic analysis and countermeasure suggestions on secondary environmental emergencies in road transportation of hazardous chemicals[J]. Chinese Journal of Environmental Engineering, 2021, 15(10): 3193-3198. doi: 10.12030/j.cjee.202011061

危化品道路运输次生突发环境事件特征分析及防范对策

    通讯作者: 虢清伟(1974—),男,博士,正高级工程师。研究方向:环境应急处置技术、环境风险管理、水污染治理。E-mail:guoqingwei@scies.org
    作者简介: 陈思莉(1982—),女,硕士,正高级工程师。研究方向:突发环境事件应急处置技术开发、水处理研究与设计。E-mail:chensili@scies.org
  • 1. 生态环境部华南环境科学研究所(生态环境部生态环境应急研究所),广州 510530
  • 2. 生态环境部环境应急与事故调查中心,北京 100035
基金项目:
中央级公益性科研院所基本科研业务专项(PM-zx703-202002-079);广东省省级科技计划项目(2016B020240007)

摘要: 针对近年来我国交通事故次生突发环境事件呈上升趋势,在分析总结我国近10年的交通事故次生突发环境事件基础上,聚焦目前危化品道路运输风险底数不清、缺乏环境风险防控工程体系和有效技术支撑以及部门联动协作等主要问题,为提高交通运输次生突发环境事件的防控能力,基于环境敏感受体等因素,提出了相关对策建议。具体对策建议包括:通过建立危化品运输道路环境风险评估体系,识别全国重大环境风险路段,摸清风险底数;推广“南阳实践”经验,消除或减轻事件影响;加强和完善部门沟通协作机制;建立健全危化品道路运输应急处置体系,提升应急处置能力。

English Abstract

  • 截至2020年9月12日,该年度由生态环境部调度的突发环境事件共66起,其中危化品交通运输次生突发环境事件有24起,占总量的37%。一直以来,危化品道路运输是仅次于安全生产事故的突发环境事件重要诱因,近年来呈总体上升趋势[1]。当前,针对危化品道路运输的评估研究大多是基于交通事故本身带来的危害,包括人员伤亡、经济损失等,相关道路风险评估、预警等方面的研究也聚焦在托运、承运、装卸、车辆运行、罐车、罐体、车速、加速度等因素[2-3]。对于由道路运输事故危化品泄漏导致的次生环境危害的研究则较少,有关交通道路突发危化品泄漏对下游敏感受体(包括饮用水源地、自然保护区等)的影响研究更少。另外,大部分研究仅考虑岸上的影响,并未考虑入河的风险,未综合考虑运输路线及其与河流的关系等因素[4-7]。而一旦污染物泄漏进入河道,产生的次生突发环境事件将造成更大影响。因此,为提高交通运输次生突发环境事件防控能力,本文通过分析近10年交通运输事故次生突发环境事件的总体特征,梳理问题根源,进而提出防范化学品道路运输中重大突发环境事件的对策建议。

  • 2010—2019年,由生态环境部调度的突发环境事件共1 053起。其中,最多的为安全生产次生突发环境事件为523起,占比50%。而交通运输为第2大突发环境事件诱因,具体数据见图1

    近年来我国突发环境事件主要特点为:

    1)交通运输事故多发,近5年呈上升趋势。交通事故次生突发环境事件共278起,占全国突发环境事件总数量的26%。2012— 2015年,交通运输次生突发环境事件数量和占比均逐年下降,2015—2019年,其数量及占比呈总体上升趋势,2019年一年达到38起,占当年总数量的46%。

    2)事故主要涉及危化品运输。2010—2019年仅危化品运输事故次生突发环境事件共275起,占交通运输次生突发环境事件的99%。事故主要发生在陆路运输过程。水运运输过程中发生的事故仅23起,占比不足9%。

    3)事故主要分布在浙江、广东、陕西、江苏、山东、湖北等省份,占交通运输次生突发环境事件的51%。其中,山西、青海、新疆等省(自治区)交通运输次生突发环境事件占该省(自治区)突发环境事件总数量的40%以上(见图2)。

    4)事故危化品主要为石油类、苯及其苯系物、无机酸等,占比超过59%(见表1)。因交通运输具有流动性强、运输物质复杂等特点,所载危险化学品入水后易快速扩散,处置难度相对较大,且极易造成流域性污染。

  • 1)由于我国的化工产业地域布局不均,“产销分离”决定了危化品生产后需要经历物流运输过程。我国以石油、天然气等为基础原料的化工产业集群大多分布在西部,而其产品销售地和下游深加工企业又多集中在东部沿海地带[8]。目前,我国5 000余种化工原料产销地域分布不均,95%以上原料需要异地运输。

    2)危化品物流运输量呈上升趋势,危化品运输事故次生突发环境事件增多。据统计,我国每年经道路运输的危化品超过1×1010 t,占危化品运输总量60%以上,占公路年运输总量30%以上。我国从事危化品货物运输的企业超过1×104家,危化品运输汽车车辆超过3.6×105辆。我国是石油与化工产品消费大国,危化品物流需求强劲,运输量年均增长10%,而2019年危化品物流市场规模已超过1.8×1013[9-10]。近几年,随着危化品运输量的增加,我国交通事故次生突发环境事件呈总体上升趋势。

    3)随着原油产量和原油加工量的不断增长,石油类运输事故次生突发环境事件上升趋势明显。据统计,我国炼油产能年均增加(2~4)×107 t。2010—2019年,石油类运输事故次生的突发环境事件从3起增至16起,占运输事故次生突发环境事件总数量的比例由11%上升至42%。2020年1—9月,石油类运输事故次生的突发环境事件为11起,占比45%,上升趋势尤为明显。

  • 1)风险底数不清。危化品运输属于高风险行业,一旦发生事故,具有影响大、波及范围大、危害大等特点[11-12]。然而,我国现行环境风险评估技术体系尚无专门针对危化品道路运输风险评估的技术方法,且各级政府生态环境部门也不掌握危化品运输种类、运输数量、运输路线、周边环境等运输状况和环境底数等基本信息,导致危化品运输事故次生突发环境事件风险底数不清,难以采取有针对性的环境风险防控与应急准备措施。针对此类事故的应急处置工作往往比较被动,容易贻误战机,造成事件影响升级。

    2)环境风险防控工程体系缺乏。一旦危化品因运输事故造成泄漏,往往沿着公路边坡、边沟进入水体,或者翻车泄漏直接进入水体。进入水体的污染物会随水流迅速下泄,进而影响到下游饮用水源,甚至可能造成跨国界水污染风险[13]。若事先能探明高风险路段下游的可用于截流、引流、导流、贮存污染物的场地,以及可用于应急处置的环境应急基础设施,将污染物控制在封闭水体或有限范围内,就能够迅速控制事态。然而,由于底数不清、环境风险防控工程体系缺乏,因此目前很难做到在较短时间内快速拦控污染物。

    3)缺乏有效的技术支撑。目前,我国道路运输的危化品种类繁多、性质多样,次生突发环境事件后的应急处置技术及措施非常复杂[14-15]。然而,由于环境应急处置技术研究不够深入,环境应急处置装备及标准的缺乏,故难以有效支撑事故发生后的科学应对措施。

    4)部门联动协作机制有待加强。危化品道路运输监管及次生事故处置涉及公安、交通、应急、生态环境、卫计等多个部门[16]。按照职责分工,运输事故发生后,公安、消防、卫计等部门一般早于生态环境部门组织现场交通疏导、应急处置、人员救援等工作。一些地方部门间缺乏有效联动协作机制,相关部门在先期处置中未及时采取有效的封堵、拦截等处置措施,造成槽罐车内危化品全部泄漏并迅速向下游迁移,增加了后续的环境应急处置难度。如2020年4月河北省涞源县酚油罐车泄漏事故、广东揭阳9·9交通事故苯酚泄漏次生突发环境事件就是如此。

  • 1)建立危化品运输道路环境风险评估体系,识别全国重大环境风险路段。推进全面评估全国危化品道路运输环境风险路段并定级,绘制全国“危化品运输道路环境风险路段一张图”,以指导环境风险防控及应急准备等工作。环境风险评估程序如图3所示。主要包括资料准备,路段识别,参数确定,评估方法,等级表征等5个方面。危化品道路运输环境风险评估采用“环境敏感受体影响推导法”,即以环境敏感受体为评估基础,依据危化品泄漏对环境敏感受体的影响程度及环境敏感受体敏感性等来筛选环境风险路段并定级。

    在评估参数的选择与确定方面,应充分考虑危化品泄漏对应的监测指标及其标准限值、道路运输的最大泄漏量、不同情形下危化品的入河量,以及泄漏时间、污染物在水中的扩散模型等诸多因素。

    以环境敏感受体为基准点,以危化品在水中表征指标的标准限值为基础,通过上述水质模型计算泄漏事故发生后污染团随时间、距离的变化情况(泄漏点为该路段的最下游点),得到污染团浓度衰减至污染物在水体中的标准限值时迁移的距离,并在此距离内寻找环境风险敏感受体。如无环境敏感受体,则该路段为无风险路段;如有环境风险敏感受体,以此环境敏感受体为基础并向上游反推(若有多个环境敏感受体,则从环境敏感受体等级从高到低依次进行),并找到临界点。污染物若在此临界点泄漏,则下游环境敏感受体处的污染物浓度刚好达标(达到《地表水环境质量标准》(GB 3838-2002)[17]相关指标限值要求),设为Z点。Z点以上为无风险路段,若危化品在此路段泄漏,不会造成下游环境敏感受体处水体相关污染物超标;Z点以下为有风险路段,若危化品在此路段泄漏,将会造成下游环境敏感受体处水体相关污染物超标,即环境敏感受体和Z点内的危化品运输路线为有风险的路段。当危化品在Z点以上泄漏,对下游环境敏感受体无风险;在Z点以下泄漏则对下游环境敏感受体存在风险。环境敏感受体与临界点Z间的距离即为环境风险路段长度。

    目前,生态环境部正在四川省成都市、陕西省汉中市和宝鸡市开展道路交通突发环境事件高发路段风险评估试点工作。

    2)推广“南阳实践”经验,减轻或消除危化品运输事故次生突发环境事件的影响。在全国重点区域大力推动环境高风险路段所属流域,实施 “以空间换时间”的“南阳实践”经验(因首先在淇河污染事件中提出,故为“南阳实践”)。即在危化品运输道路风险评估基础上,提前探明危化品运输高风险路段下游可用于截流、引流、导流、贮存污染物的场地,以及可用于应急处置的桥梁、闸、坝等环境应急基础设施,构成临时应急池。该应急池既可有效拦截隔离污水,又不影响上游清水下泄,通过“空间”换取污染物处置的“时间”。可构成的“空间”设施包括引水式电站、湿地、干枯河床、引水管道、江心洲型河道、坑塘、槽车、排水管道(排渠)、连通水道、多级拦截坝等十余种设施。在此基础上,将南阳实践成果转化成“一河一策一图”电子化成果,指导突发环境事件的科学处置,努力实现从“被动应对”到“主动防控”的重大转变。

    3)加强和完善部门沟通协作机制,防范化解危化品运输事故次生重特大突发环境事件的发生。建立健全公安、交通运输、应急管理、生态环境等部门共同参与的危化品道路运输事故联合预防和应对机制,形成“基本信息共享、动态监控通报、同步联合应对”的工作格局。通过部门基础信息共享,生态环境部门可形成全国危化品道路运输环境风险路段汇总,并共享给交通运输、应急管理等部门,推进危化品道路运输车辆运输路线优化及环境风险实时预警,从源头化解运输事故次生重特大突发环境事件的发生。

    4)建立健全危化品道路运输事故应急处置体系,提升应急处置能力。环境应急总体系统包括风险源监控与预警体系,环境质量监测与预警体系,环境事件应急处置体系,环境后评估与善后体系。其中,环境事件应急处置体系包括查清切断污染来源、应急监测、污染物削减、调水控污、供水保障、卫生应急预案、生态环境影响后评估、事故应对综合调度、事故舆论引导等9大方面。在发生突发环境事件时,一般应急顺序为“一气、二水、三土”,以短时间大范围高浓度的污染物影响转化成小范围长期低损害的自然过程,并尽量避免与人、食物、生物等接触,防止向毒性变大方向发展为应急处置原则。阻源顺序为:危化品运输车辆罐体、岸上、支流或短的河段、河床、较大水域。由以上顺序可以看出,事件发生时间越长,阻源难度越大,故先期处置十分重要。可采用的主要削污措施包括围阻、回收、吸附、烧除、掩埋、削沉、掺混、修复。应根据污染物的性质及污染程度来确定,具体采取一种或者多种联合的削污措施。

参考文献 (17)

返回顶部

目录

/

返回文章
返回