美国污染地块风险管控的发展历程、演变特征及启示

焦文涛, 方引青, 李绍华, 岳勇, 丁宁, 秦之瑞, 张红振. 美国污染地块风险管控的发展历程、演变特征及启示[J]. 环境工程学报, 2021, 15(5): 1821-1830. doi: 10.12030/j.cjee.202009186
引用本文: 焦文涛, 方引青, 李绍华, 岳勇, 丁宁, 秦之瑞, 张红振. 美国污染地块风险管控的发展历程、演变特征及启示[J]. 环境工程学报, 2021, 15(5): 1821-1830. doi: 10.12030/j.cjee.202009186
JIAO Wentao, FANG Yinqing, LI Shaohua, YUE Yong, DING Ning, QIN Zhirui, ZHANG Hongzhen. Risk management and control of contaminated sites in the United States: Development process, evolution characteristics and enlightenment[J]. Chinese Journal of Environmental Engineering, 2021, 15(5): 1821-1830. doi: 10.12030/j.cjee.202009186
Citation: JIAO Wentao, FANG Yinqing, LI Shaohua, YUE Yong, DING Ning, QIN Zhirui, ZHANG Hongzhen. Risk management and control of contaminated sites in the United States: Development process, evolution characteristics and enlightenment[J]. Chinese Journal of Environmental Engineering, 2021, 15(5): 1821-1830. doi: 10.12030/j.cjee.202009186

美国污染地块风险管控的发展历程、演变特征及启示

    作者简介: 焦文涛(1978—),男,博士,研究员。研究方向:土壤污染调查、风险评估、修复方案设计与修复技术研发。E-mail:wtjiao@rcees.ac.cn
    通讯作者: 方引青(1986—),女,博士,助理研究员。研究方向:污染地块的风险管控、风险沟通及政府绩效评估。E-mail:yqfang@rcees.ac.cn
  • 基金项目:
    国家重点研发计划专项(2020YFC1807500)
  • 中图分类号: X53

Risk management and control of contaminated sites in the United States: Development process, evolution characteristics and enlightenment

    Corresponding author: FANG Yinqing, yqfang@rcees.ac.cn
  • 摘要: 系统分析了美国环境保护署从污染地块风险管控的酝酿阶段、形成阶段到发展阶段的演变历程,阐述其内涵逐步深化、在地块治理中采取风险管控的比重逐渐升高、动态全过程管理制度逐步建立以及公众参与制度逐步完善的演变特征。基于此,提出了对我国污染地块风险管控的几点启示,即:明确内涵及路径,实现弯道超车;建立动态管理制度,强化示范推广;完善地块全周期管理,注重公众参与。
  • 城市卫生填埋场中生活垃圾在卫生填埋过程中,经微生物分解、发酵等反应,产生大量有毒有害的垃圾渗滤液,对填埋场周边生态环境系统构成严重危险[1]。垃圾渗滤液的处置流程通常采用“厌氧-缺氧-好氧”组合生物工艺脱氮并降解有机污染物,但要使垃圾渗滤液达标排放,需进一步结合深度处理工艺。在垃圾渗滤液深度处置工艺中,纳滤技术因其优异的污染物去除效果而备受关注,MAGALHAES等[2]通过纳滤膜能够实现90%以上的COD去除率。但纳滤深度处理工艺会产生处理体积约15%~30%的纳滤浓缩液[3]。相较于垃圾渗滤液,垃圾渗滤液纳滤浓缩液中因含有更高浓度的有机难降解污染物、药物污染物、无机盐等[4],使得生化系统难以对其进一步处置,因此,亟需一种垃圾渗滤液纳滤浓缩液生化预处理工艺以提高其可生化性。

    垃圾渗滤液纳滤浓缩液常规处理方法有回灌法、蒸发法和高级氧化法[5]。回灌法直接将浓缩液回流至垃圾填埋场填埋层,具有运行简便,处理成本低的优势,但长期回灌会造成填埋场渗滤液水质严重恶化并影响填埋层稳定性[6]。蒸发法通过加热蒸发的方式,可快速处置垃圾渗滤液纳滤浓缩液,但该方法对处置设备的抗腐蚀要求很高[7]。高级氧化法(advanced oxidation processes, AOPs)主要利用强氧化性的活性自由基(羟基自由基(·OH)、氯自由基、超氧自由基等[8])能高效分解、矿化难降解有机污染物,以提高垃圾渗滤液纳滤浓缩液的可生化性,但AOPs也存在药剂消耗量大和运行成本高等问题[9]。臭氧(O3)氧化法是AOPs中广泛应用于污水处理的一种工艺,O3在水体中可形成O3分子、单线态氧和·OH等一系列强氧化自由基[10]。其中O3分子和单线态氧具有选择氧化性,可选择性降解含有不饱和键的物质[11-12],而·OH则可对绝大多数污染物均有较好的去除效果[13]。ZHAO等[14]通过O3预处理渗滤液纳滤浓缩液,COD去除率可达到25%左右,挥发性脂肪酸质量浓度从18.14 mg·L−1提高至101.70 mg·L−1,其中大分子有机污染物可高效转化为可降解小分子有机物,渗滤液纳滤浓缩液的可生化性得到显著提高。HE等[15]构建的γ-Al2O3/O3体系处理垃圾渗滤液浓缩液,在γ-Al2O3投加量为50 g·L−1,O3投加量为22 mg·min−1,初始pH为7.3,反应温度为30 ℃,处理时间为30 min的最佳条件下,COD去除率可达70%,(BOD5/COD)B/C可从0.01提高到0.2。尽管目前O3氧化在催化剂领域的研究取得了良好进展,但O3催化剂在长期运行中的存在严重的失活问题极大限制其实际应用。HE等[16]在O3催化氧化处理实际废水中发现在O3氧化工艺稳定运行12个月后,O3催化剂的催化处理COD效率由56%回落至14.5%。此外,O3在水中较低的溶解度和传质系数导致其利用率低,也阻碍基于O3的AOPs工艺用于垃圾渗滤液纳滤浓缩液的处理。因此,采用新的O3氧化技术应用于垃圾渗滤液纳滤浓缩液的高效处理已成为未来的着重研究的方向。

    臭氧微纳米气泡技术(O3/micro-nanobubbles, O3/MNBs)是将微纳米气泡技术与O3氧化技术高效结合的一种工艺。微纳米气泡技术常采用水力空化,通过改变流体水力条件造成局部压力减小而引发空化效应,产生的微纳米气泡尺寸一般为0.2~50 μm,能够在水中停留数小时[17]。这使得O3可以更有加效的溶于水中,改善了O3溶解度低和传质系数低的问题,提高O3利用率[18]。此外,微纳米气泡较小的直径会导致气泡内部产生较高的压力,进一步加大了O3的溶解度[18]。ZHENG等[19]采用O3/MNBs和常规O3法处理晴纶废水,相同条件下,O3/MNBs可实现42%的COD去除率,B/C从0.04提升到0.13,而常规O3法的COD去除率仅有17%,B/C从0.04提升到0.08。当前O3/MNBs在有机污染物降解方面取得了一定的成果,但该技术的应用仍多停留于模拟废水,在实际废水中的应用鲜有报道。

    鉴于此,本研究将采用絮凝-O3/MNBs耦合工艺高效处理垃圾渗滤液纳滤浓缩液,探究耦合工艺中絮凝阶段的絮凝剂投加量、絮凝时间、絮凝转速以及O3/MNBs工艺的进气量、反应时间、反应温度等工艺参数对垃圾渗滤液纳滤浓缩液中污染物去除及可生化性的影响。并深入考察了絮凝-O3/MNBs耦合工艺对双酚A(Bisphenol A, BPA)、磺胺嘧啶(Sulfadiazine, SDZ)、磺胺甲恶唑(Sulfamethoxazole, SMX)和萘普生(Naproxen, NPX)等典型药物物质的去除效能。本研究为絮凝-O3/MNBs耦合在垃圾渗滤液纳滤浓缩液预处理工艺的实际工程运用中提供科学的技术支持。

    实验中所采用的垃圾渗滤液纳滤浓缩液采集自佛山市高明区苗村白石坳垃圾填埋场一厂,渗滤液纳滤浓缩液的基本水质参数:COD为(4752±140) mg·L−1,BOD5为(427±30) mg·L−1。实验试剂甲醇、乙腈、甲酸等为色谱级,聚合硫酸铁(polymerized ferrous sulfate, PFS)、聚丙烯酰胺(polyacrylamide, PAM)、氢氧化钠、硫酸、BPA、SDZ、SMX和NPX等为分析纯,上述试剂均采购自阿拉丁试剂(中国)。实验仪器包括多功能数控消解仪(昌鸿DIS-36B,中国),微纳米气泡发生器(禹创AD-24030,山东),O3发生器(同林3S-TS10,中国),磁力搅拌器(艾卡C-MAG HS-7,德国)。

    1)絮凝实验。絮凝实验示意图见图1(a),取1 L垃圾渗滤液纳滤浓缩液于烧杯中。置于磁力搅拌器上,加入适量质量浓度为30%的PFS溶液,以600 r·min−1快速混合60 s,随后在一定范围内调节转速,反应结束后加入适量质量分数(3‰)PAM溶液,200 r·min−1搅拌60 s,随后静置10 min,取上清液。絮凝实验选取絮凝时间(0~60 min)、絮凝剂投加量(0~12 g·L−1)及絮凝转速(0~400 r·min−1)为主要的技术参数进行研究,探究絮凝预处理垃圾渗滤液纳滤浓缩液的最优条件,每批实验重复2次。

    图 1  絮凝实验示意图和O3/MNBs实验反应器装置
    Figure 1.  Schematic diagram of flocculation experiments and reactor setup for O3/MNBs experiments

    2) O3/MNBs实验。絮凝实验完成后,取4 L絮凝处理后的垃圾渗滤液纳滤浓缩液(基本水质参数:COD为(1230±37) mg·L−1,BOD5为(270±15) mg·L−1)于O3/MNBs反应器装置中,O3/MNBs反应器装置如图1(b)所示。该装置高30 cm,内径14 cm,水浴层宽2 cm,有效容积4.6 L。本实验中的O3发生器以纯氧为气源产生O3气体,气体中O3的质量浓度为80 mg·L−1,O3气体进入MNBs发生器与垃圾渗滤液纳滤浓缩液絮凝上清液混合,通过高速旋转和加压溶解作用获得含MNBs的水悬浮液。O3/MNBs反应器装置中未反应的O3通过反应器顶部通气孔进入质量浓度为2%碘化钾(KI)吸收液。O3/MNBs高效氧化处理垃圾渗滤液纳滤浓缩液的实验选取O3进气量(50~500 mL·min−1)、初始pH(3~11)和反应温度(10~50 ℃)等为主要影响因素进行研究,考察其对垃圾渗滤液纳滤浓缩液可生化性的影响,每批实验重复3次。

    1)水质指标分析。化学需氧量采用COD测定仪(哈希DR1010,美国)测定,pH采用pH计(三信SX 751,上海)测定,5天生化需氧量(BOD5)采用BOD测定仪(赛莱默OxiTop IS12,德国)测定,色度和腐殖质采用紫外分光光度计(岛津UV2700,日本)测定,腐殖质以紫外分光光度计在254 nm波长处的吸光度计,色度计算方法[18]如式(1)所示。

    stringUtils.convertMath(!{formula.content}) (1)

    式中:C为色度;A436A525A620分别为紫外分光光度计在波长为436、525和620 nm波长处的吸光度。

    2)药品和个人护理品污染物分析。本研究中的药品和个人护理品(pharmaceutical and personal care products, PPCPs)污染物检测通过固相萃取法富集浓缩,过膜后装入液相小瓶,浓缩后待测样品4 ℃保存。PPCPs污染物采用高效液相色谱仪(赛默飞Ultimate 3000,美国)进行检测,色谱柱型号为AcclaimTM 120 C18(5 μm,4.6 mm×150 mm),检测方法见表1

    表 1  PPCPs污染物检测条件
    Table 1.  Detection conditions for PPCPs contaminants
    污染物 流动相比例 流速/(mL·min−1) 检测波长/nm 温度/℃
    双酚A 甲醇∶超纯水=70∶30 1.0 225 30
    萘普生 甲醇∶0.1%甲酸水=70∶30 1.0 254 30
    磺胺嘧啶 甲醇∶0.1%甲酸水=35∶65 1.0 269 30
    磺胺甲恶唑 甲醇∶0.1%甲酸水=35∶65 1.0 275 30
     | Show Table
    DownLoad: CSV

    3) 发光细菌急性毒性检测。急性毒性检测采用费氏弧菌(金达清创V.fischeri,北京)作为急性毒性检测的实验菌种,急性毒性检测标准采用硫酸锌作为阳性对照,以质量浓度2%的氯化钠溶液作为空白对照。急性毒性检测时将样品加入培养好的V.fischeri菌液,放入生物发光检测仪内振荡10 s,然后置于空气中暴露15 min后,测定发光值。发光抑制率计算方法见式(2),根据不同的发光抑制率判别水质急性毒性风险等级的标准为:E<30%时,属低毒;30%≤E<50%时,属中毒;50%≤E<70%时,属重毒;70%≤E<100%时,属高毒;E≥100%时,属剧毒[20]

    stringUtils.convertMath(!{formula.content}) (2)

    式中:E为发光抑制率,%;I为样品暴露15 min后的发光值;I0为空白组暴露15 min后的发光值。

    采用絮凝工艺对垃圾渗滤液纳滤浓缩液进行预处理,能有效去除垃圾渗滤液纳滤浓缩液中的胶体和大分子有机物[21],降低后续O3/MNBs工艺的处理能耗,并提高处理效率,对垃圾渗滤液纳滤浓缩液的高效处理有着重要作用。游丽华[22]采用混凝耦合微气泡O3氧化处理焦化废水生化尾水,可实现83.1%的COD去除率,其中混凝工艺去除效果占比可达到46.1%。

    本实验所采用的PFS絮凝剂,水解形成[Fe(H2O)6]3+、[Fe2(H2O)3]3+、[Fe(H2O)2]3+等多核络离子可使垃圾渗滤液纳滤浓缩液中的胶体物质脱稳,形成絮体沉降下来以此去除污染物[23]。本实验通过调整絮凝工艺的时间、PFS投加量和絮凝转速等参数研究污染物的最佳去除条件,结果如图2所示。

    图 2  不同絮凝条件对垃圾渗滤液纳滤浓缩液色度、腐殖质、COD和B/C处理效果的影响
    Figure 2.  Influence of different flocculation conditions on the treatment effect of colour, humus, COD and B/C of nanofiltration concentrate of landfill leachate

    在PFS投加量为9 g·L−1,絮凝转速为300 r·min−1的条件下,探究了絮凝时间0~60 min对絮凝工艺的影响,结果见图2(a)。可见,垃圾渗滤液纳滤浓缩液的色度、腐殖质及COD的去除率均随絮凝时间的延长而提高,在0~40 min内色度、腐殖质及COD去除率分别达到62.2%、46.9%和69.9%,B/C由0.09增至0.20。但进一步延长絮凝时间至60 min时,色度、腐殖质和COD的去除率分别为69.8%、52.7%和73.7%,B/C增至0.21。这一结果表明,垃圾渗滤液纳滤浓缩液絮凝工艺在0~40 min时,垃圾渗滤液纳滤浓缩液短时间内可形成大量絮体从而达到较高的去除率,但40 min后随着垃圾渗滤液纳滤浓缩液中的大分子污染物浓度的降低,絮体间的碰撞概率减小,去除效果增长有限。

    确定最佳絮凝时间为40 min,选取絮凝转速为300 r·min−1,以此探究PFS投加量在0~12 g·L−1时对絮凝效果的影响,结果如图2(b)所示。当PFS投加量为0~2 g·L−1时,垃圾渗滤液纳滤浓缩液的污染物去除效果较差,色度、腐殖质和COD的去除率仅为1.7%、0.5%和7.4%,B/C从0.09增至0.10;而在PFS投加量为4~10 g·L−1时,垃圾渗滤液纳滤浓缩液处理效果随着PFS投加量的增加而明显提高,当PFS投加量为10 g·L−1时,垃圾渗滤液纳滤浓缩液中色度、腐殖质和COD去除率分别提高至79.8%、59.2%和73.3%,B/C增至0.22。这一结果表明,在垃圾渗滤液纳滤浓缩液的PFS投加量为0~2 g·L−1时,形成的多核络离子较少,凝聚的絮体尺寸小、数量少,难以通过良好的网捕卷扫作用去除污染物[24]。随后增加垃圾渗滤液纳滤浓缩液的PFS投加量为4~10 g·L−1,垃圾渗滤液纳滤浓缩液中多核络离子数量也相应增加,这使得胶体与多核络离子不断碰撞脱稳,脱稳胶体进而被络离子吸附形成长链结构,并促进网捕卷扫作用将小絮体沉淀下来[24]。当PFS投加量进一步增加至12 g·L−1时,絮凝处理效果并无显著提高,这是由于过量的絮凝剂会使得絮体表面电荷发生改变,出现胶体再稳现象,去除率无法提高甚至降低[25]。因此,垃圾渗滤液纳滤浓缩液絮凝处理最佳PFS投加量为10 g·L−1

    在最佳絮凝时间40 min,最佳PFS投加量10 g·L−1的条件下,考察0~400 r·min−1转速对絮凝工艺处理效能的影响,结果如图2(c)所示。当转速为0~300 r·min−1时,絮凝效果随转速的增加而提高,色度、腐殖质及COD去除率分别从0 r·min−1的20.4%、14.2%和13.3%提高至300 r·min−1下的79.8%、59.2%和73.3%,B/C由0.18增至0.22。而当絮凝转速增至400 r·min−1时,相较于300 r·min−1垃圾渗滤液纳滤浓缩液絮凝效果出现下降,色度、腐殖质及COD去除率由79.8%、59.2%和73.3%下降至74.0%、55.3%和69.4%,B/C从0.22降至0.21。上述结果表明,适宜搅拌强度是保证PFS、胶体以及絮体间能够充分接触的必要条件,需要注意的是,在搅拌强度过高时,已经形成的絮体会被水的剪切力破碎从而致使去除率下降[26]

    根据以上实验结果,絮凝时间40 min、PFS投加量10 g·L−1、絮凝转速300 r·min−1为垃圾渗滤液纳滤浓缩液最佳絮凝条件。较GU等[27]用PFS处理渗滤液浓缩液的COD去除效果(44.4%)有较大提高。尽管絮凝去除了大部分污染物,絮凝处理后的垃圾渗滤液纳滤浓缩液可生化性依然较差[28],B/C仅为0.22,仍需进一步处理以提高可生化性。

    1) O3进气量对O3/MNBs技术处理垃圾渗滤液纳滤浓缩液絮凝上清液的效能影响。垃圾渗滤液纳滤浓缩液经絮凝处理后,尽管COD去除率达到73.3%,但B/C仍较低,无法保证后续生物工艺深度处理效果。因此,本实验采用O3/MNBs高级氧化技术进一步提高垃圾渗滤液纳滤浓缩液的可生化性。O3作为氧化剂直接参与氧化反应,其使用量直接影响整个O3/MNBs处理的效果。实验控制O3气体中O3质量浓度为80 mg·L−1,通过改变O3进气量来探究O3投加量对垃圾渗滤液纳滤浓缩液处理效果的影响。

    在初始pH为(5.8±0.2)、反应温度为(25±1) ℃的条件下,研究了O3进气量(50~500 mL·min−1)对O3/MNBs处理垃圾渗滤液纳滤浓缩液效果的影响,结果如图3所示。可见,垃圾渗滤液纳滤浓缩液色度、腐殖质及COD去除率由O3进气量为50 mL·min−1条件下的35.3%、60.8%和10.3%提高至400 mL·min−1的77.6%、75.1%和26.5%。但当进一步提高O3进气量,垃圾渗滤液纳滤浓缩液色度、腐殖质及COD的去除率均无明显增效,这与WU等[29]的研究结果相似。与色度、腐殖质及COD去除率随O3进气量增加而逐步上升的情况不同,O3/MNBs出水B/C在低O3进气量时出现了轻微降低的现象,B/C从垃圾渗滤液纳滤浓缩液絮凝处理后出水时的0.22分别降至50 mL·min−1下的0.14和100 mL·min−1下的0.13。进一步增加O3进气量,O3/MNBs出水B/C出现明显改善,在进气量由200 mL·min−1增至400 mL·min−1的条件下,O3/MNBs出水B/C由0.21增至0.44。但当O3进气量进一步增加至500 mL·min−1时,O3/MNBs出水B/C再次降低。这可能是由于水中O3含量较低时,O3优先与可生物降解污染物进行反应,BOD组分浓度下降;随着O3进气量的提高,O3与难以生物降解的耗氧有机物(以COD计)反应逐步占优,分解大分子难降解有机物并生成小分子有机物,BOD组分浓度上升;O3过量时,多余的O3会与·OH反应[30],导致处理效果不佳,垃圾渗滤液纳滤浓缩液的B/C出现下降。综合考虑,O3/MNBs工艺最佳参数O3进气量为400 mL·min−1。O3投加量是影响O3/MNBs效能的重要因素,但并不是唯一因素,可通过调控其他因素来提高O3/MNBs工艺的处理效果。

    图 3  不同O3进气量对垃圾渗滤液纳滤浓缩液絮凝上清液色度、腐殖质、COD和B/C处理效果的影响
    Figure 3.  Effects of different ozone intakes on the treatment of colour, humus, COD and B/C of flocculated supernatant from nanofiltration concentrate of landfill leachate

    2)初始pH对O3/MNBs技术处理垃圾渗滤液纳滤浓缩液絮凝上清液的效能影响。O3氧化方式分为O3分子的直接氧化和·OH的间接氧化,·OH氧化还原电位(2.80 eV)比O3分子的氧化还原电位(2.07 eV)更高,具有更强的氧化性,同时,较O3分子选择性氧化,·OH可以对绝大多数污染物进行降解[31]。并且O3分子与·OH在O3/MNBs反应体系内存在如式(3)~(5)的反应过程,两者均与反应体系的pH密切相关:酸性条件下,体系以O3分子为主;而碱性条件下,体系以·OH为主[32]。O3/MNBs工艺通过改变垃圾渗滤液纳滤浓缩液絮凝处理后的出水初始pH,考察初始pH对O3/MNBs技术处理垃圾渗滤液纳滤浓缩液絮凝上清液的效能影响。

    确定最佳O3进气量为400 mL·min−1,在反应温度为(25±1) ℃时,探究初始pH(3、5、7、9、11)对垃圾渗滤液纳滤浓缩液絮凝上清液处理效果的影响,结果如图4所示。由图4(a)可知,当初始pH为3~5时,垃圾渗滤液纳滤浓缩液脱色率随着反应时间一直稳步上升,分别达到了73.3%和80.0%。在pH为7时,色度可完全去除,继续提高初始pH,完全脱色所用时间也越来越短。同时,提高垃圾渗滤液纳滤浓缩液的初始pH对腐殖质去除率也有增益,垃圾渗滤液纳滤浓缩液腐殖质去除率由pH=3时的71.7%增加到pH=11时的80.8%。此外,图4(b)结果显示初始pH对COD去除率和B/C的影响显著,pH=3时,COD去除率为26.3%;pH=11时,COD去除率为38.9%。B/C由pH=3时0.43提高到pH=11时的0.62,垃圾渗滤液纳滤浓缩液的可生化性大幅提升。上述结果表明,提高进水初始pH能够有效提高O3/MNBs体系对垃圾渗滤液纳滤浓缩液絮凝上清液中污染物的去除效果。从反应过程中pH变化(图4(c))可知,在初始pH=3时,反应体系pH从最初的pH=3提高至pH=3.51。这表明O3分子基本未消耗氢氧根离子产生·OH,此时,O3/MNBs反应体系以O3分子氧化为主,使得O3/MNBs体系具有氧化选择性,只能降解含有不饱和键的物质,整体污染物去除率较低[31]。后续提高初始pH,反应过程中pH均成下降趋势,表明O3分子消耗氢氧根离子生成·OH,随着初始pH提高,反应过程中pH下降趋势愈大,这是因为随着氢氧根离子浓度大幅增加,O3分子加速分解为·OH。同时,有研究[33]表明,MNBs表面通常带有负电荷,这意味着阴离子氢氧根将聚集在气-液界面,O3在界面处以更快的速度产生·OH。此外,MNBs的坍缩会产生更多的·OH[34],进一步提高垃圾渗滤液纳滤浓缩液絮凝上清液中的·OH的含量,最终使O3/MNBs工艺进水初始pH=11时,垃圾渗滤液纳滤浓缩液污染物去除率及出水B/C最高。因此,O3/MNBs反应体系处理垃圾渗滤液纳滤浓缩液絮凝上清液的最佳初始pH为11。

    图 4  不同初始pH对垃圾渗滤液纳滤浓缩液絮凝上清液色度、腐殖质、COD和B/C处理效果的影响以及反应过程中pH的变化
    Figure 4.  Effects of different initial pH on the treatment effect of colour, humus, COD and B/C of flocculated supernatant from nanofiltration concentrate of landfill leachate and the change of pH during the reaction process
    stringUtils.convertMath(!{formula.content}) (3)
    stringUtils.convertMath(!{formula.content}) (4)
    stringUtils.convertMath(!{formula.content}) (5)

    3)温度对O3/MNBs技术处理垃圾渗滤液纳滤浓缩液絮凝上清液的效能影响。温度对传统O3氧化的影响较为显著,王新典等[35]研究发现单一O3体系在温度由15 ℃升到65 ℃时,对苯酚溶液的降解率从73.4%提高到89.2%。李玉英等[36]研究了在不同温度条件下,微电解-O3处理水杨酸的效能,水杨酸去除率由15 ℃的78.9%增至30 ℃的96.5%。因此,本实验研究了反应温度对O3/MNBs处理垃圾渗滤液纳滤浓缩液絮凝上清液的影响。

    在最佳O3进气量400 mL·min−1,最佳初始pH=11的条件下,考察反应温度10~50 ℃对O3/MNBs处理垃圾渗滤液纳滤浓缩液絮凝上清液的效能影响,结果如图5所示。可见,在反应温度为10 ℃时,色度、腐殖质及COD去除率分别为100.0%、74.7%及33.5%,B/C从0.22增至0.58。反应温度20~50 ℃条件下,垃圾渗滤液纳滤浓缩液的脱色率均在40 min时达到95.0%左右,在80 min可实现色度的完全去除;垃圾渗滤液纳滤浓缩液的腐殖质去除率在80 min时达到80.0%左右,延长反应时间并无明显增效。由图5(b)可见,垃圾渗滤液纳滤浓缩液的COD去除率在20~50 ℃内无显著变化,均随时间逐步提高,最后去除率为37.0%左右;垃圾渗滤液纳滤浓缩液的B/C在20~50 ℃条件下的变化与COD去除率近似,B/C均从0.22增至0.62左右,上述结果表明在反应温度为10 ℃时,O3/MNBs技术处理垃圾渗滤液纳滤浓缩液絮凝上清液的效能会略微降低,这一结果可能是O3分子在水体中存在传质阻力因降温而增大的现象[37],致使O3分子分解缓慢,大量O3分子直接逸散至空气中,参与反应的O3浓度降低。在反应温度20~50 ℃的条件下,O3/MNBs技术处理垃圾渗滤液纳滤浓缩液絮凝上清液的效能均有所提高,这表明升温改善了O3分子传质阻力大的问题。需要注意的是,在反应温度为20~50 ℃时,反应温度从20 ℃增至50 ℃对O3/MNBs处理垃圾渗滤液纳滤浓缩液絮凝上清液的效能无显著影响。这可能是由于随着反应温度的升高,O3的传质效率和反应速率会有所提高,但存在着温度升高O3因分子热运动在垃圾渗滤液纳滤浓缩液中溶解度下降的问题[38]。从反应活化能角度来看,升温会促进溶液中的放热反应,但同时也会抑制存在的吸热反应。垃圾渗滤液纳滤浓缩液含有大量污染物,在O3/MNBs实验中同时发生大量的吸热和放热反应,当垃圾渗滤液纳滤浓缩液中所有放热反应和吸热反应叠加在一起所呈现出来的表观活化能数值比较小时,O3/MNBs体系的反应速率对反应温度的变化就会比较迟钝,体现为反应温度对垃圾渗滤液纳滤浓缩液污染物去除率并无明显影响。这与游丽华[22]研究温度对微气泡O3氧化去除污染物效果得出的结论相似。综合考虑,选择30 ℃为最佳反应温度。综上所述,在O3进气量400 mL·min−1、初始pH=11、反应温度为30 ℃的条件下可以实现O3/MNBs的最佳处理效果。

    图 5  不同温度对垃圾渗滤液纳滤浓缩液絮凝上清液色度、腐殖质、COD和B/C处理效果的影响
    Figure 5.  Effect of different temperatures on the treatment effect of colour, humus, COD and B/C of flocculated supernatant from nanofiltration concentrate of landfill leachate

    为进一步研究絮凝-O3/MNBs耦合工艺对垃圾渗滤液纳滤浓缩液可生化性的影响,本实验在垃圾渗滤液纳滤浓缩液中选取代表性的PPCPs,如BPA、SDZ、SMX和NPX等药物污染物进行深入研究。有研究表明,现有污水处理厂的活性污泥体系中的微生物无法有效去除大部分PPCPs[39],同时PPCPs会对微生物产生毒害作用[40]。因此,垃圾渗滤液纳滤浓缩液中的高浓度PPCPs的去除对垃圾渗滤液纳滤浓缩液可生化的影响尤为重要。

    本研究采用的絮凝耦合O3/MNBs工艺对垃圾渗滤液纳滤浓缩液中PPCPs污染物有较高的去除效率,结果如图6(a)所示。最佳条件下的絮凝工艺对垃圾渗滤液纳滤浓缩液中BPA、SDZ、SMX及NPX去除率分别为32.3%、30.8%、34.5%和25.7%,BPA、SDZ、SMX及NPX的质量浓度分别从垃圾渗滤液纳滤浓缩液原液的194.1、29.4、25.0和20.3 μg·L−1降至絮凝工艺出水的131.5、20.3、16.4和15.1 μg·L−1。而在进一步的O3/MNBs处理中,垃圾渗滤液纳滤浓缩液中的BPA、SDZ、SMX和NPX去除率增至60.4%、100.0%、80.4%和67.7%。这一结果表明,垃圾渗滤液纳滤浓缩液通过絮凝工艺去除PPCPs的效能是有限的,絮凝出水进一步通过O3/MNBs工艺处理,才可实现较高的PPCPs去除率。这可能是因为絮凝通过吸附电中和及网捕卷扫作用去除胶体物质,对于非胶体物质,主要通过PFS絮凝剂形成的铁盐氢氧化物网状沉淀裹挟去除[41],PPCPs这类结构尺寸较小的物质可穿过较大孔径的网眼留在垃圾渗滤液纳滤浓缩液絮凝出水中。在进一步的O3/MNBs工艺中,垃圾渗滤液纳滤浓缩液中BPA、SDZ、SMX及NPX等PPCPs通过O3分子和·OH氧化降解[42-45],母体被分解成小分子物质甚至是完全矿化。絮凝-O3/MNBs耦合工艺处理BPA、SDZ、SMX及NPX等难降解物质的过程与垃圾渗滤液纳滤浓缩液中B/C的变化相互验证:絮凝工艺在去除垃圾渗滤液纳滤浓缩液大分子有机物的同时也去除了部分小分子有机物,使得B/C从垃圾渗滤液纳滤浓缩液原液的0.09增至絮凝出水的0.22,可生化性增幅较小,而后的O3/MNBs工艺在降解大分子有机物的同时也生成了小分子有机物,垃圾渗滤液纳滤浓缩液可生化性显著提高,B/C从絮凝出水的0.22增至0.62。

    图 6  絮凝-O3/MNBs耦合工艺处理垃圾渗滤液纳滤浓缩液中BPA、SDZ、SMX和NPX的效能以及整个体系生物毒性的变化
    Figure 6.  Efficacy of the coupled flocculation-O3/MNBs process treating of BPA, SDZ, SMX and NPX in nanofiltration concentrates of landfill leachate and changes in whole system biotoxicity

    垃圾渗滤液纳滤浓缩液因含有高浓度有机物、无机盐和重金属等污染物,具有相当高的生物毒性,本实验采用V.fischeri法检测其生物毒性,并以发光抑制率作为生物毒性的直观体现。垃圾渗滤液纳滤浓缩液原液的发光抑制率高达92.4%,属高毒水体,对于生物工艺的微生物种群有着极高的毒害作用。垃圾渗滤液纳滤浓缩液进行生物处置前,须经预处理工艺降低水质毒性。

    在絮凝-O3/MNBs耦合工艺最佳实验条件下,垃圾渗滤液纳滤浓缩液的生物毒性变化如图6(b)所示,絮凝工艺对垃圾渗滤液纳滤浓缩液生物毒性的处理效果非常显著,发光抑制率从垃圾渗滤液纳滤浓缩液原液的92.4%降至垃圾渗滤液纳滤浓缩液絮凝处理出水的50.6%,水质毒性等级从高毒降为重毒,生物毒性大幅降低。而在O3/MNBs中进一步反应,水中的O3分子和·OH通过加成反应、亲电反应、亲核反应和链式反应[13]来使大分子物质发生开环或是断链,有机物分子结构发生变化使得生物毒性降低。此外,O3/MNBs可以对垃圾渗滤液纳滤浓缩液中的重金属络合物进行破络,释放出的部分金属离子水解沉淀,减轻了垃圾渗滤液纳滤浓缩液重金属带来的生物毒性,絮凝处理后的垃圾渗滤液纳滤浓缩液对发光细菌的抑制率从50.6%降至20.3%。水质毒性等级从重毒降为低毒,生物毒性进一步降低。絮凝-O3/MNBs耦合工艺使垃圾渗滤液纳滤浓缩液的生物毒性从92.4%降至20.3%,水质毒性等级从原液的高毒级别降至絮凝-O3/MNBs耦合工艺处理出水的低毒级别,极大减轻了后续生物工艺的负荷,有效提高垃圾渗滤液纳滤浓缩液的可生化性,为垃圾渗滤液纳滤浓缩液进一步生物处置可提供良好的条件。

    1)在絮凝实验中,在絮凝时间为40 min,PFS投加量为10 g·L−1,絮凝转速为300 r·min−1的最佳条件下,垃圾渗滤液纳滤浓缩液的色度、腐殖质和COD去除率分别达到79.8%、59.2%和73.3%,B/C从0.09增至0.22,垃圾渗滤液纳滤浓缩液的可生化性得到改善,并为后续O3/MNBs工艺的高效处理创造有利条件。

    2) O3进气量为400 mL·min−1,初始pH=11,反应温度为30 ℃的条件可以实现O3/MNBs的最佳处理效果,经絮凝处理后的垃圾渗滤液纳滤浓缩液中色度、腐殖质和COD去除率分别为100.0%、80.8%和38.9%,B/C从0.22增至0.62,垃圾渗滤液纳滤浓缩液可生化性得到显著提升。

    3)絮凝-O3/MNBs耦合工艺处理垃圾渗滤液纳滤浓缩液的B/C变化及纳滤浓缩液中BPA、SDZ、SMX和NPX等新污染物降解效率的研究一致表明絮凝-O3/MNBs耦合工艺是提升垃圾渗滤液纳滤浓缩液可生化性的有效方法,最佳处置条件下能有效减弱垃圾渗滤液纳滤浓缩液72.1%生物毒性。

  • 图 1  美国污染地块风险管控内涵的深化

    Figure 1.  The concept development of contaminated sites’ risk management and control in the United States

    图 2  美国国家优先名录污染源治理措施统计(1982—1991年)

    Figure 2.  Statistics of the pollution source’s treatment measures in US national priority list (1982—1991)

    图 3  美国国家优先名录污染源治理措施统计(2012—2014年)

    Figure 3.  Statistics of the pollution source’s treatment measures in US national priority list (2012—2014)

    图 4  美国超级基金污染源区制度控制及监测自然衰减策略文件统计(1986—2014年)

    Figure 4.  Percentage of monitoring natural attenuation and institutional control in treatment files of US Superfund pollution sources (1986—2014)

    表 1  狭义和广义风险管控的区别与联系

    Table 1.  Differences and connections between the narrow and broad concepts of risk management and control

    风险管控类别类别间的联系治理方式类别间的区别
    本质目标决策依据所处阶段实施目的
    狭义的风险管控为切断传播途径而采取的地块治理方式,如阻隔技术、制度控制等。一类切断传播途径为主的治理措施。对场地污染进行源头控制。主要考虑技术可行性。主要处于地块治理方案的实施阶段。对场地污染进行源头控制。
    广义的风险管控既是一类基于风险的地块治理措施,也是一种基于风险的地块治理理念。将污染物风险控制在人体和环境可接受的范围内。综合考虑经济、环境因素和社会因素。通常包括地块调查、风险评估、治理方案的选择、治理方案的实施等阶段。将风险控制在人体健康可接受的范围之内。
    风险管控类别类别间的联系治理方式类别间的区别
    本质目标决策依据所处阶段实施目的
    狭义的风险管控为切断传播途径而采取的地块治理方式,如阻隔技术、制度控制等。一类切断传播途径为主的治理措施。对场地污染进行源头控制。主要考虑技术可行性。主要处于地块治理方案的实施阶段。对场地污染进行源头控制。
    广义的风险管控既是一类基于风险的地块治理措施,也是一种基于风险的地块治理理念。将污染物风险控制在人体和环境可接受的范围内。综合考虑经济、环境因素和社会因素。通常包括地块调查、风险评估、治理方案的选择、治理方案的实施等阶段。将风险控制在人体健康可接受的范围之内。
    下载: 导出CSV

    表 2  美国污染地块风险管控不同发展阶段的基本特征

    Table 2.  Characteristics of different development stages of risk management and control of contaminated sites in the United States

    污染地块风险管控各个阶段时间范围起点事件概念范畴
    酝酿阶段20世纪80年代中期至90年代中期1986年美国国颁布《超级基金修正与重新授权法案》狭义的风险管控
    形成阶段20世纪90年代中期至21世纪初1995年美国测试和材料协会颁布《石油释放场址基于风险的纠正行动标准准则》广义的风险管控
    发展阶段21世纪初至今2006年美国成立绿色可持续组织广义的风险管控
    污染地块风险管控各个阶段时间范围起点事件概念范畴
    酝酿阶段20世纪80年代中期至90年代中期1986年美国国颁布《超级基金修正与重新授权法案》狭义的风险管控
    形成阶段20世纪90年代中期至21世纪初1995年美国测试和材料协会颁布《石油释放场址基于风险的纠正行动标准准则》广义的风险管控
    发展阶段21世纪初至今2006年美国成立绿色可持续组织广义的风险管控
    下载: 导出CSV
  • [1] NAIDU R, WONG M H, NATHANAIL P. Bioavailability-the underlying basis for risk-based land management[J]. Environmental Science and Pollution Research, 2015, 22: 8775-8778. doi: 10.1007/s11356-015-4295-z
    [2] CUNDY A B, BARDOS R P, CHURCH A, et al. Developing principles of sustainability and stakeholder engagement for “gentle” remediation approaches: The European context[J]. Journal of Environmental Management, 2013, 129: 283-291.
    [3] BLUM E D. Love Canal Revisited[M]. Kansas: University Press of Kansas, 2008: 22.
    [4] VISCUSI J. How costly is "clean"? An analysis of the benefits and costs of superfund site remediations[J]. Journal of Policy Analysis & Management1999, 18(1): 2-27.
    [5] United States Environmental Protection Agency (USEPA). The comprehensive environmental esponse, compensation, and liability act (CERCLA) [EB/OL]. [2014-07-21]. Washington, DC: USEPA-http:∥www.epa.gov/superfund/policy/cercla.htm.
    [6] SHERK G. Reauthorization of CERCLA and the redevelopment of brownfields: Who will pay the orphan’s share?[J]. Environmental Engineering and Policy, 2001, 2(4): 171-179. doi: 10.1007/s100220000031
    [7] 贾峰. 美国超级基金法研究: 历史遗留污染问题的美国解决之道[M]. 北京: 中国环境出版社, 2015.
    [8] HEDEMAN W N, SHORB P E, MCLEAN C A. The superfund amendments and reauthorization act of 1986: Statutory provisions and EPA implementation[J]. Hazardous Waste and Hazardous Materials, 1987, 4(2): 193-210. doi: 10.1089/hwm.1987.4.193
    [9] United States Environmental Protection Agency (USEPA). Superfund remedy report(1st edition)[EB/OL]. [2020-09-01]. 1991. https://www.epa.gov/sites/production/files/2015-09/documents/asr_1stedition.pdf.
    [10] United States Environmental Protection Agency (USEPA). Superfund remedy report(7th edition)[EB/OL]. [2020-09-01]. 1995. https://www.epa.gov/sites/production/files/2015-09/documents/asr7theditionpdf.
    [11] CARTER K M. Superfund amendments and reauthorization act of 1986: Limiting judicial review to the administrtive record in cost recovery actions by the EPA[J]. Columbia Law Review, 1988, 74: 1152.
    [12] PERKINS S, SNOWHITE L. The CERCLA five-year review process: Lessons learned at Rocky Mountain Arsenal[J]. Federal Facilities Environmental Journal, 2001, 12(3): 99-107. doi: 10.1002/ffej.1021
    [13] 王兴润, 颜湘华. 美国超级基金制度与国内污染地块评估案例[M]. 北京: 中国环境出版社, 2014.
    [14] 牛静, 李鹏, 黄海, 等. 美国超级基金5年回顾政策对我国污染场地风险管理的启示[J]. 中国环境管理, 2015, 7(2): 68-73. doi: 10.3969/j.issn.1674-6252.2015.02.014
    [15] DEEB R, HAWLEY E, KELL L, et al. Alternative endpoints and approaches selected for the remediation of contaminated groundwater at complex sites[J]. Journal of Immunological Methods, 2011, 64(3): 269-281.
    [16] 李云祯, 董荐, 刘姝媛, 等. 基于风险管控思路的土壤污染防治研究与展望[J]. 生态环境学报, 2017, 26(6): 1075-1084.
    [17] CORNOR J A, MCHUGH T E. Impact of risk-based corrective action (RBCA) on State LUST Corrective Action Programs[J]. Human and Ecological Risk Assessment: An International Journal, 2002, 8(3): 573-589. doi: 10.1080/10807030290879835
    [18] CORNOR J A. Study shows positive impact of ASTM risk-based corrective action (RBCA) standard[J]. ASTM Standardization News, 2000, 28: 34-39.
    [19] CHANG S H, KUO C Y, WANG J W, et al. Comparison of RBCA and CalTOX for setting risk-based cleanup levels based on inhalation exposure[J]. Chemosphere, 2004, 56(4): 359-367. doi: 10.1016/j.chemosphere.2004.01.006
    [20] United States Environmental Protection Agency (USEPA). SSG user’s guide and technical background document[S]. EPA/540/R-96/018, 1996.
    [21] 龚宇阳. 国际经验综述: 污染地块管理政策与法规框架[R]. 华盛顿: 世界银行, 2010.
    [22] 耿春女, 李小平, 罗启仕, 等. 污染场地土壤修复导则分析及启示[J]. 上海环境科学, 2009, 28(2): 66-71.
    [23] United States Environmental Protection Agency (USEPA). Guidance for developing ecological soil screening levels[R]. Washington D C: USEPA, 2003.
    [24] 卢军, 伍斌, 谷庆宝. 美国污染场地管理历程及对中国的启示: 基于风险的可持续管理[J]. 环境保护, 2017, 45(24): 65-70.
    [25] SENIER L, HUDSON B, FORT S, et al. Brown superfund basic research program: A multistakeholder partnership addresses real-world problems in contaminated communities[J]. Environmental Science & Technology, 2008, 42(13): 4655-4662.
    [26] INOUE Y, KATAYAMAK A. Two-scale evaluation of remediation technologies for a contaminated site by applying economic input-output life cycle assessment: Risk-cost, risk-energy consumption and risk-CO2 emission[J]. Journal of Hazardous Materials, 2011, 192(3): 1234-1242. doi: 10.1016/j.jhazmat.2011.06.029
    [27] BRAUN A B, TRENTIN A W, VISENTIN C, et al. Sustainable remediation through the risk management perspective and stakeholder Involvement: A systematic and bibliometric view of the literature[J]. Environmental Pollution, 2019, 255: 113-221.
    [28] RAHM D. Superfund and the policies of US hazardous waste policy[J]. Environmental Politics, 1998, 7(4): 75-91. doi: 10.1080/09644019808414423
    [29] 罗思东. 美国城市的棕色地块及其治理[J]. 城市问题, 2002(6): 64-67. doi: 10.3969/j.issn.1002-2031.2002.06.018
    [30] LOLLAND K S, LEWIS R E, TIPTON K. Framework for integrating sustainability into remediation projects[J]. Remediation Journal, 2011, 21(3): 7-38. doi: 10.1002/rem.20288
    [31] FAVARA P J, KRIEGER T M, BOUGHTON B. Guidance for performing footprint analyses and life-cycle assessments for the remediation industry[J]. Remediation Journal, 2011, 21(3): 39-79. doi: 10.1002/rem.20289
    [32] BUTLER P B, LARSEN-HALLOCK L, LEWIS R, et al. Metrics for integrating sustainability evaluations into remediation projects[J]. Remediation Journal, 2011, 21(3): 81-87. doi: 10.1002/rem.20290
    [33] 侯德义, 李广贺. 污染土壤绿色可持续修复的内涵与发展方向分析[J]. 环境保护, 2016, 44(20): 16-19.
    [34] MARTINO L E, DONA C L, DICERBO J, et al. Green and sustainable remediation practices in Federal Agency cleanup programs[J]. Environmental Earth Sciences, 2016, 75(21): 1407. doi: 10.1007/s12665-016-6219-8
    [35] KUPPUSAMY S, VENKATESWARLU K, MEGHARAJ M, et al. Risk-based remediation of polluted sites: A critical perspective[J]. Chemosphere, 2017, 186: 607-615. doi: 10.1016/j.chemosphere.2017.08.043
    [36] O'CONNOR D, HOU D Y. Targeting cleanups towards a more sustainable future[J]. Environmental Science: Processes & Impacts, 2018, 20(2): 266-269.
    [37] BRAUN A B, TRENTIN A W, VISENTIN C, et al. Relevance of sustainable remediation to contaminated sites manage in developed and developing countries: Case of Brazil[J]. Land Use Policy, 2020, 94: 104533. doi: 10.1016/j.landusepol.2020.104533
    [38] PENG Y, LIU Y, DAI J, et al. A sustainable strategy for remediation of oily sewage: Clean and safe[J]. Separation and Purification Technology, 2020, 240: 116592. doi: 10.1016/j.seppur.2020.116592
    [39] United States Environmental Protection Agency (USEPA). Superfund remedy report (fifth edition)[EB/OL]. [2020-09-01]. 1993. https://www.epa.gov/sites/production/files/2015-09/documents/asr_5thedition.pdf.
    [40] United States Environmental Protection Agency (USEPA). Superfund remedy report(fifteenth edition)[EB/OL]. [2020-09-01]. 2017. https://www.epa.gov/sites/production/files/2017-09/documents/100000349.pdf.
    [41] SCOW K M, HICKS K A. Natural attenuation and enhanced bioremediation of organic contaminants in groundwater[J]. Current Opinion in Biotechnology, 2005, 16(3): 246-253. doi: 10.1016/j.copbio.2005.03.009
    [42] National Research Council. Environmental cleanup at Navy facilities: Adaptive site management[EB/OL]. [2020-09-01]. http://www.nap.edu.
    [43] Environmental Security Technology Certifification Program(ESTCP). Assessing alternative endpoints for groundwater remediation of contaminated sites. Project ER-200832 final report[R]. 2010.
    [44] Ohio EPA (Environmental Protection Agency). Urban setting designation[EB/OL]. [2020-09-01]. 2009. www.epa.state.oh.us/portals/30/vap/docs/fact8.pdf.
    [45] United States Environmental Protection Agency (USEPA). Summary of key existing epa cercla policies for groundwater restoration. OSWER Directive 9283.1-33[R]. 2009.
    [46] Environmental Security Technology Certifification Program (ESTCP). Final report, assessing alternative endpoints for groundwater remediation at contaminated sites. ESTCP Project ER-200832[R]. 2011.
    [47] HADLEY P W, ARULANANTHAM R, GANDHI D. California's low threat luft site closure policy: Looking forward[J]. Remediation Journal, 2015, 25(2): 9-33. doi: 10.1002/rem.21421
    [48] 容跃. 美国污染场地清理的风险评估简介及政策制定[J]. 环境科学, 2017, 38(4): 1726-1732.
    [49] PRICE J, SPRENG C, HAWLEY E L, et al. Remediation management of complex sites using an adaptive site management approach[J]. Journal of Environmental Management, 2017, 204: 738-747.
    [50] United States Environmental Protection Agency (USEPA). National strategy to expand superfund optimization practices from site assessment to site completion[EB/OL]. [2020-09-01]. 2012. https://nepis.epa.gov/Exe/ZyPDF.cgi?Dockey=P100K17Y.PDF.
    [51] United States Environmental Protection Agency (USEPA). Emergency planning and community Right-to-Know Act[EB/OL]. [2020-09-01]. 2002. http://scidiv.bellevuecollege.edu/gj/ENVS100/ENVS100-W11/EPCRA.pdf.
    [52] FASEY A, BREAKWELL G M. Risk communication in the workplace[J]. Journal of Risk Research, 2001, 4(4): 307-308. doi: 10.1080/13669870110062703a
  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 4.4 %DOWNLOAD: 4.4 %HTML全文: 81.5 %HTML全文: 81.5 %摘要: 14.2 %摘要: 14.2 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 95.3 %其他: 95.3 %XX: 3.4 %XX: 3.4 %上海: 0.0 %上海: 0.0 %北京: 0.8 %北京: 0.8 %北海: 0.0 %北海: 0.0 %南昌: 0.0 %南昌: 0.0 %天津: 0.0 %天津: 0.0 %徐州: 0.1 %徐州: 0.1 %抚顺: 0.0 %抚顺: 0.0 %济南: 0.0 %济南: 0.0 %深圳: 0.0 %深圳: 0.0 %郑州: 0.0 %郑州: 0.0 %阳泉: 0.1 %阳泉: 0.1 %驻马店: 0.0 %驻马店: 0.0 %其他XX上海北京北海南昌天津徐州抚顺济南深圳郑州阳泉驻马店Highcharts.com
图( 4) 表( 2)
计量
  • 文章访问数:  7164
  • HTML全文浏览数:  7164
  • PDF下载数:  121
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-09-26
  • 录用日期:  2020-10-24
  • 刊出日期:  2021-05-10
焦文涛, 方引青, 李绍华, 岳勇, 丁宁, 秦之瑞, 张红振. 美国污染地块风险管控的发展历程、演变特征及启示[J]. 环境工程学报, 2021, 15(5): 1821-1830. doi: 10.12030/j.cjee.202009186
引用本文: 焦文涛, 方引青, 李绍华, 岳勇, 丁宁, 秦之瑞, 张红振. 美国污染地块风险管控的发展历程、演变特征及启示[J]. 环境工程学报, 2021, 15(5): 1821-1830. doi: 10.12030/j.cjee.202009186
JIAO Wentao, FANG Yinqing, LI Shaohua, YUE Yong, DING Ning, QIN Zhirui, ZHANG Hongzhen. Risk management and control of contaminated sites in the United States: Development process, evolution characteristics and enlightenment[J]. Chinese Journal of Environmental Engineering, 2021, 15(5): 1821-1830. doi: 10.12030/j.cjee.202009186
Citation: JIAO Wentao, FANG Yinqing, LI Shaohua, YUE Yong, DING Ning, QIN Zhirui, ZHANG Hongzhen. Risk management and control of contaminated sites in the United States: Development process, evolution characteristics and enlightenment[J]. Chinese Journal of Environmental Engineering, 2021, 15(5): 1821-1830. doi: 10.12030/j.cjee.202009186

美国污染地块风险管控的发展历程、演变特征及启示

    通讯作者: 方引青(1986—),女,博士,助理研究员。研究方向:污染地块的风险管控、风险沟通及政府绩效评估。E-mail:yqfang@rcees.ac.cn
    作者简介: 焦文涛(1978—),男,博士,研究员。研究方向:土壤污染调查、风险评估、修复方案设计与修复技术研发。E-mail:wtjiao@rcees.ac.cn
  • 1. 中国科学院生态环境研究中心,北京 100085
  • 2. 中化环境控股有限公司,北京 100070
  • 3. 生态环境部环境规划院,北京 100012
基金项目:
国家重点研发计划专项(2020YFC1807500)

摘要: 系统分析了美国环境保护署从污染地块风险管控的酝酿阶段、形成阶段到发展阶段的演变历程,阐述其内涵逐步深化、在地块治理中采取风险管控的比重逐渐升高、动态全过程管理制度逐步建立以及公众参与制度逐步完善的演变特征。基于此,提出了对我国污染地块风险管控的几点启示,即:明确内涵及路径,实现弯道超车;建立动态管理制度,强化示范推广;完善地块全周期管理,注重公众参与。

English Abstract

  • 随着我国工业企业“退二进三”改制进程的推进,产业结构加速调整,工业企业搬迁遗留了大量污染地块。利用有限的资源和资金对这些地块进行治理,成为当前土壤污染治理领域的紧迫任务。相对于污染源清除的治理方式,风险管控的成本更低、对环境的影响更小[1],是发达国家治理土壤污染的一种经济有效的选择[2]。鉴于土壤污染修复成本高昂,风险管控逐步成为我国在土壤污染防治领域的必然选择。2016年5月,国务院印发了《土壤污染防治行动计划》(后简称“土十条”),提出了“预防为主,保护优先,风险管控”的土壤污染治理原则。2019年1月1日实施的《中华人民共和国土壤污染防治法》进一步强化了该理念。在此期间,我国相继出台了一系列技术导则,初步建立了我国污染地块风险管控制度体系。然而,由于相关工作起步较晚,配套政策和具体的案例实践还有待进一步加强。

    美国是最早开始污染地块治理和风险管控的国家。本文系统分析了美国环境保护署(United State Environmental Protection Agency, USEPA)污染地块风险管控的从无到有、从初级到高级的发展历程,阐述了其内涵逐渐深化、应用逐步广泛、动态管理制度逐步建立、公众参与制度不断完善的演变特征,基于此提出了明确内涵及路径、建立动态管理制度、完善全周期管理等我国污染地块风险管控的发展思路,以期为我国污染地块风险管控制度的建立提供参考。

  • 1) 20世纪80年代初开始的污染地块大规模修复阶段。20世纪早期,美国经济和城市化的快速发展,工厂外迁导致大量污染土地遗留在城区。这些污染地块上的危险废弃物给周边居民造成了严重威胁,也引发了一些危害大、影响坏的环境事故。“拉夫运河事件”就是其中一个著名的案例[3]。该事件使美国政府意识到现有环境法规已无法应对日益严重的地块污染事件。1980年,美国国会通过了《综合环境反应、赔偿与责任法案》,目标是加速危险废弃物地块的清理并追究污染责任人的法律责任;同时,设立专门的信托基金,在责任主体无法确定时,用信托基金来支付清理费用。该法案在业界被称为《超级基金法》[4-5]

    美国《超级基金法》有2个特点:一是建立了“严格的无限连带责任制度”,这意味着任何一个责任方都可以依法被要求承担清理责任,当其无力依法承担或赔偿清理费用时,任何对其控股或参股的组织或个人都有可能成为责任对象;二是“彻底清理”,即所有治理行动都是以尽可能将污染物浓度降低到地块背景值为目标。

    《超级基金法》在当时的污染地块治理和公众舆论管理中发挥了积极作用。在此之后,USEPA先后发布了危险等级系统和第一批国家优先名录,法案实施之初就有400个污染地块进入国家优先名录。1986年,第一个污染地块成功完成修复,并从国家优先名录名单中删除。这些举措帮助USEPA成功提升了政府形象和公信力[6]。但由于当时立法仓促,很多条款在内容上缺乏严密性,导致诉讼过程冗长、地块治理效率低下,《超级基金法》出台后的6年间,国家优先名录中只有1个地块成功修复。这也为事后在修复标准和追责程序上的修订埋下伏笔。

    2)20世纪80年代中期至90年代中期的污染地块风险管控酝酿阶段。由于早期的《超级基金法》责任认定过于严苛,导致高成本和低效率问题逐渐凸显。根据1985年USEPA的统计数据,应列入国家优先名录的地块有1500~10 000个。这些地块的治理成本高达1 000亿~10 000亿美元[7]。而法案推行效率低下也逐渐被公众所诟病,故美国国会于1986年10月10日通过了《超级基金修正与重新授权法案》[8]

    《超级基金修正与重新授权法案》从4个方面对《超级基金法》进行了改进。一是将永久性修复与修复技术革新放在同等重要的位置,鼓励有利于降低成本、加速清理进程的创新性技术的探索应用。1989年,超级基金国家优先名录地块使用创新性技术的比例是37%[9],1994年增长到43%[10]。二是增加了进口化学衍生物税(Imported Chemical Derivatives)和公司环境收入税(Corporate Environmental Income)来补充信托基金,使超级基金由1980年的160亿美元增加至850亿美元。三是增加了州政府和公众参与度。如规定州或当地政府选择不同的治理方案,鼓励利益相关者加入和解程序。四是在修复标准方面规定,如果情况允许USEPA应优先选择彻底修复的方法,而当彻底修复成本过高时,可使用阻隔、隔断、制度控制等切断传播途径的方式[11]。但应当启动“5年回顾”,即每5年评估地块治理效果是否与预期相同,以及在治理阶段的暴露假设、毒性数据、清除水平和治理目标是否持续有效,若评估结果为肯定,则5年回顾终止[12-14]

    在此阶段,USEPA对污染地块的治理仍是优先选择永久性清除污染物,风险管控理念尚未正式形成。同时,阻隔技术和制度控制开始出现并得到一定发展。根据超级基金相关报告数据显示,1986—1995年,美国国家优先名录中使用阻隔技术的污染地块比例从28%上升至40%,采取制度管控的污染地块比例从0上升至9%。学术界将此阶段称为“狭义的风险管控”阶段,即“主动修复技术失效或者未能达到修复目标的最后的替补措施”[15-16]。本阶段即美国污染地块风险管控的酝酿阶段,1986年的《超级基金修正与重新授权法案》为该阶段的起点。

    3)20世纪90年代中期至21世纪初的污染地块风险管控的形成阶段。USEPA逐渐认识到,当时的法规对地块治理的目标设定较为保守,应修改传统治理理念,以鼓励更快、更经济有效的地块治理。新的治理理念即基于风险管理的方法,通过控制污染物扩散、限制土地用途和清理污染物等方式,将风险控制在人体和环境可接受的范围内。本阶段的标志性事件是美国测试和材料协会1995年颁布《石油释放场址基于风险的纠正行动标准准则》(Guide to Risk-Based Corrective Action for Petroleum Release Sites,RBCA)[17]。RBCA包含3层风险评估的决策框架。1)一级评估。是将污染地块采样结果与国家通用的筛选值进行比较,如果样品最大检出浓度低于该通用筛选值,则判定该地块对未来人群可接受,评估工作结束。而当样品检出浓度高于该通用筛选值,并且以该筛选值依据计算的修复量较大,则开展二级评估。2)二级评估。是对污染地块进行更为详细的采样调查以获取更多地块特征参数,并基于该场地污染特征和暴露特性的筛选值计算出一个筛选值,再以该筛选值为依据计算修复目标量。如果修复量可接受,则只需进行二级评估,评估工作结束。如果修复量仍然较大,则开展三级评估。3)三级评估。是继续对评估模型参数进行替代和修正,并以此为依据重新计算修复量。随着风险评估层次的提升,修复目标越来越加客观,成本也越来越低[18-19]

    1996年,USEPA制定了《土壤筛选导则》。该导则为场地管理者提供了基于风险水平的污染地块土壤筛选水平。土壤筛选水平并非国家规定的修复标准,而是在《超级基金法》指导下,用来确定污染场地的面积、化学物质种类和暴露途径等因素,以此决定是否需要开展“修复调查”和“可行性研究”,并采取进一步的修复行动[20]。此后,美国各区和州以此为框架,根据本地污染物特征制定了适合本区域的土壤管制标准[21]

    本阶段与上一阶段的不同之处在于,其最终目的以将污染物控制在人体与环境可接受范围内[22-23],而不是彻底将污染物从地块中清除。本阶段以RBCA的出台为起点,是污染地块风险管控正式形成的阶段,强调公众参与的必要性[24-25],更关注修复技术的选择和成本效益[26-27]

    4)21世纪初至今的污染地块风险管控的发展阶段。超级基金管理模式解决了土壤污染修复治理的资金来源问题。然而,由于污染场地及设施所有者需要负担土壤修复的连带责任,造成人们尽量避开带有污染问题的土地开发。为此,2002年,美国提出了“棕地开发”的土壤污染管理模式,为未得到有效开发的污染地块提供各种补贴和政策优惠。同年,美国国会通过《小企业责任减免与“棕地”复兴法》,继续扩大联邦政府对州政府地块治理的财政支持,并且减免周边土地所有者及未来购买者的责任。2005年8月,美国允许向合格的“预期诚信购买者”提供“棕地”贷款。此举推动了棕地再开发和利用[28],当年便吸引近34亿美元的私人资金进入棕地再开发[29]

    在鼓励棕地再利用、促进土地可持续发展的同时,美国也开始探索绿色地块治理策略。其中一个重要事件是2006年美国可持续修复论坛成立,并陆续发布《可持续修复白皮书》《可持续修复框架》[30]《修复行业足迹分析和生命周期评估导则》[31]《开展修复项目可持续评估的方法》[32]《超级基金绿色修复战略》[33]《绿色修复标准指南》[34]。这些文件推动了可持续发展的理念逐步融入美国污染地块风险管控中[35-36]。本阶段风险管控的主要特点是选择恰当治理策略的同时,减少温室气体排放、能源消耗,促进社会可持续发展,同时也更加强调利益相关者参与地块治理的必要性[37],为污染地块风险管控的发展阶段。美国开展污染地块可持续治理较早,相关系列框架导则也较完善,对于带动欧美其他国家可持续修复工作具有指导意义[38]

  • 1)污染地块风险管控内涵逐步深化。笔者将污染地块的风险管控概念分为狭义和广义。其中,狭义的风险管控指当修复失效或未达到预期修复目标而采取的临时地块治理措施,通常指切断传播途径,其实质为地块治理措施;广义的风险管控指综合考虑经济、环境因素,后期融入可持续性发展等理念,将污染物风险控制在人体和环境可接受的范围内而采取系列工程措施和管理措施的总和,这既是一系列地块隔断的治理措施,也是一种基于风险的地块治理理念。因此,酝酿阶段的污染地块风险管控属于狭义范畴,形成和发展阶段的风险管控属于广义范畴。从美国污染地块风险管控的经历来看,是内涵逐步深化的过程(见图1),广义和狭义的污染地块风险管控区别与联系见表1表2

    2)风险管控及管理措施比重逐渐升高。根据1993年的美国超级基金报告中的数据[39],1982—1991年,国家优先名录中有676个地块的治理技术属于对污染源的控制(见图2)。其中,采取修复治理措施的污染地块418个,占比62%;采取工程控制/处置措施的污染地块250个,占比37%,采取制度控制、长期监测和搬迁等措施的污染地块8个,占比1%。工程控制、制度控制、监测、搬迁等切断传播途径的治理措施属于狭义的风险管控,故在本阶段,采取狭义风险管控的污染地块共258个,占比38%。

    根据2017年的美国超级基金报告中的数据[40],2012—2014年,国家优先名录中有188个地块的治理技术为对污染源采取的治理技术属于对污染源的控制(见图3)。在这一阶段,很多污染地块用的是组合技术,其中,采取修复治理措施的污染地块14个,占比7%;采取治理修复及制度控制组合措施的污染地块5个,占比3%;采取治理修复及工程控制/处置组合措施的污染地块18个,占比10%;采取治理修复、工程控制/处置及制度控制组合措施的污染地块48个,占比26%,采取治理修复、工程控制/处置、制度控制及监测自然衰减组合措施的污染地块1个,占比不到1%;采取工程控制/处置及制度控制组合措施的污染地块46个,占比24%;采取工程控制/处置、制度控制及监测自然衰减组合措施的污染地块2个,占比1%;采取工程控制/处置措施的污染地块15个,占比8%;采取制度控制及监测自然衰减组合措施的污染地块1个,占比不到1%;采取制度控制措施的污染地块37个,占比20%;采取监测自然衰减措施的污染地块1个,占比不到1%。因此,在本阶段采取狭义风险管控的污染地块共116个,相对于1982—1991年的38%,占比上升至55%。由于场地条件较复杂的地块才会被列入国家优先名录,大部分“棕地”未被列入国家优先名录,所以实际上在美国污染地块治理中采取风险管控的比例应高于上述统计数据。在美国超级基金立法几年后,风险管控比重才得以明显提高,这一方面说明了政策的滞后性,另一方面也表明其推广与公众接受度及配套政策密切相关。

    此外,1982—1991年间,还没有制度控制与工程控制相结合的案例,而2012—2014年的数据显示,制度控制与工程控制相结合的案例占比24%,即制度控制已逐渐成为工程控制的补充措施。

    制度控制和监测自然衰减属于污染地块风险管控的相关管理措施,二者总体呈现增长趋势(见图4)。作为风险管控的辅助管理措施,制度控制在1995年之后的几年呈现一段快速增长期,表明1995年RBCA和《土壤筛选导则》等政策得以有效实施。监测自然衰减在1995年也出现了明显拐点且比重快速上升,在这之前比重几乎为0。USEPA长期监控数据表明,在对敏感区域的最小生态干扰、减少能源消耗、降低产生废物以及减少地块治理时间和费用方面,监测自然衰减比修复治理具有更多优势[15, 41],故USEPA对此措施采取开放态度。

    3)动态全过程制度逐步建立。由于污染地块风险管控通常需要将污染物控制在原地,需要对污染地块进行长期管理,所以,USEPA逐步建立并完善优化审查制度和适应性场地管理制度。

    适应性场地管理是由美国国家科学研究委员会于2003年提出的一种管理策略,被描述为综合考虑污染场地水文地质、治理技术、社会需求等综合因素,对复杂污染场地进行全面、灵活、迭代的管理方法[42]。根据适应性场地管理方法,用于修订补救策略的管理措施包括修改补救活动目标、技术不可行的ARAR豁免,以及更大风险ARAR豁免、替代浓度限值、地下水管理区、地下水重新分类、低风险地块结案等。ARAR全称为Applicable or Relevant and Appropriate Requirement,中文为“适用或相关和适当的要求”。ARAR是为了确保选择的场地治理方案符合美国的环保法律要求,又称为“其他法律的顺从手册”。

    修改治理目标是基于特定的现场条件下可以使用备选治理目标的一种方法。特定条件指污染源已得到有效控制,污染物降解浓度稳定下降、无潜在受体或无潜在传播途径等。该方式已被美国科罗拉多、南卡罗莱纳等州采用[43-44]。技术不可行的ARAR豁免最初是指在地下水治理中若遵守ARAR在技术上不可行,则可实施ARAR豁免,后来该方法也用在土壤、沉积物、地表水的风险管控中[41]。更大风险豁免是指,若遵守ARAR将导致对人类健康和环境的造成潜在的更大风险,则可实施ARAR豁免[23]。替代浓度限值是在特定情况下提供替代清理目标的管理方法。它提供一种基于风险的污染物浓度限值,在此限值内在不会对人体健康或环境受体造成重大危害[43]。地下水管理区是一种对地下水的特殊管理方法,当某污染的地下水无法满足特定分类时,可按一定要求通过阻隔和制度控制防止污染扩散到地下水管理区以外[45]。地下水重新分类是美国州政府向国家管理机构提出的一项申请,要求改变特定地下水和(或)含水层的名称,以便更准确地反映该地下水当前和潜在的可利用度或脆弱性,对地下水的重新分类因州而异,地下水重新分类通常与地下水使用限制、土地使用契约和其他制度一起使用[46]。低风险场地结案是指地块满足特定标准则可以将场地认定为低风险,给予结案[47-48]。根据2017年ITRC对美国50个州做的问卷统计,美国近40个州在污染地块治理过程中对治理方案进行过修改[49]

    优化审查是适应性场地管理的重要组成部分。USEPA在20世纪初就开始使用该方法用于污染地块治理。2012年9月,USEPA出台《将超级基金的优化实践从现场评估扩展到现场完工》,将基于风险的决策过程进行优化审查,并扩展应用到污染地块治理的所有阶段[50]。近年来,地块治理全生命周期的优化审查得到广泛应用。通过该策略,还可以辅助管理者将利益相关者的信息记录下来,激发利益相关者的参与热情。根据USEPA网站公布的数据,截至2020年5月,美国成功实施优化审查的案例达到150个。ITRC网站上公布了美国16个州较为典型的优化审查案例,供各州参考。

    4)公众参与制度逐步完善。自1986年美国国会颁布的《紧急规划和社区知情权法》将公众扩大到包括政府、企业、社区组织、非盈利组织以及任何潜在的未来合作伙伴之后,USEPA逐步建立了一套完善、切实可行的污染场地公众参与模式[51]。根据《超级基金法》,USEPA有以下义务:定期披露场地治理相关信息;接受社会公众的意见并向其解释环保署的行为及相关依据;提供与项目有关的公众出版物或项目说明;为公众参与过程提供技术支持[52]。美国公众参与制度鼓励利益相关方广泛参与到土地规划过程,推动了地块治理和城市更新。

  • 当前,我国污染地块治理处于重大历史机遇期。一方面《中华人民共和国土壤污染防治法》及相关导则初步建立了我国风险管控的基本制度;另一方面也开始探索绿色可持续风险管控。美国的经验,对我国下一步推动污染地块治理进程具有一定的参考意义。

    1)明确内涵及路径,实现弯道超车。从美国污染地块风险管控的几个阶段来看,由狭义到广义、从初级到高级这一不断深化的过程,每个阶段都有自身的发展特征及内在规律。相关经验可助我国明确污染地块风险管控所处阶段,从历史演变视角为我国提供弯道超车的机会。从我国目前的发展来看,风险管控理念刚刚形成,应积极推动可持续风险管控的相关工作。鉴于我国当前处于多期叠加阶段,面临问题相对较多、情况更为复杂,建议加强对风险管控有关问题的研判,厘清相关内涵、明确当前所处阶段,吸收国外成熟经验,加快技术创新,推动我国污染地块治理弯道超车。

    2)建立动态管理制度,强化示范推广。美国的污染地块风险管控这一长期制度是在发展中逐步建立和完善的,并且非常注重总结并吸收实践经验。我国多数污染地块由于生产历史较长、生产产品随市场迭代较快、早期管理不规范及环保措施不严等原因,导致其污染状况复杂,而风险管控的方式决定了对其管理必然是一个长期过程。因此,应建立污染地块长期管理制度,积极探索灵活的、动态调整的管理方式,加快推进风险管控的试点示范研究,定期对污染地块风险管控的效果进行监测和评估,及时对成功经验进行复制推广,根据技术的使用和发展情况及时对风险管控措施进行优化调整,从而保障我国污染地块风险管控效果。

    3)完善全周期管理,注重公众参与。早期的美国自适应场地管理、优化审查策略虽然侧重于地块治理阶段,但是随着经验的积累,逐步将管理方法贯穿地块治理全生命周期,并十分注重与利益相关者之间的风险交流。我国应积极总结污染地块风险管控经验,根据国情尽快建立针对污染地块治理全生命周期的管理体系,尽快出台鼓励利益相关者参与污染地块各阶段的管理办法。

参考文献 (52)

返回顶部

目录

/

返回文章
返回