-
溶解性固体总量(total dissolved inorganic salt,TDS)的质量分数大于1%的含氮废水通常称为高盐含氮废水[1]。目前,高盐含氮废水排放量大且来源广泛,如腌制食品工业[2]、海产品加工[3]、皮革生产[4]等。由于来源不同,高盐含氮废水的性质复杂各异,不仅含有氮、磷等营养元素和中低碳链的有机物,也含有高浓度的
${\rm{SO}}_4^{2 - }$ 、Cl−、Ca2+、Mg2+、Na+等无机离子,是一种污染严重且处理难度较大的废水。传统的膜分离法、电解法、离子交换法虽能去除盐度,但对污染物的降解效果甚微。MFCs微生物燃料电池(microbial fuel cells,MFC)是一种新型废水处理技术,因能以产电微生物作为催化剂,氧化水中污染物并且实现化学能向电能的转换而备受国内外关注。研究者们对MFCs性能的考察,最初主要集中于低盐条件下的废水处理、营养物质回收或生物传感设备。2002年,TENDER等[5]将阳极嵌入海洋沉积物中,阴极置于上覆海水中,利用沉积微生物的活动在水-沉积物表面形成电压梯度,产生电能,实现了MFC在高盐环境下产电的可能性,为高盐废水的处理提供了新思路。盐度会对MFC的性能产生影响。LIU等[6]研究发现,当离子强度由100 mmol·L−1增加到400 mmol·L−1时,以乙酸钠为碳源的单室MFC的产电性能便得以改善; TREMOULI等[7]考察了盐度对COD去除率的影响,发现当盐度从2.7 g·L−1增加至6.7 g·L−1时,COD的去除率从70%下降至52%;黄志鹏[8]研究了盐度分别对单室MFC中
${\rm{NH}}_4^ + $ -N、${\rm{NO}}_3^ - $ -N和${\rm{NO}}_2^ - $ -N的处理效果影响,发现随着盐度的增加,${\rm{NH}}_4^ + $ -N的去除率逐渐减小,而${\rm{NO}}_3^ - $ -N和${\rm{NO}}_2^ - $ -N的还原速率呈现先升高后降低的趋势。目前,MFC处理高盐废水的研究大多集中于盐度对电池产电性能以及有机物去除的影响方面,而对高盐条件下同步硝化反硝化除氮的影响还鲜见报道。为优化以高盐含氮废水为底物的MFC的性能,并为今后MFC应用于实际废水提供参考,本研究根据实际废水的水质变化情况,设置了5组不同碳氮比(C/N分别为3∶1、4∶1、5∶1、6∶1和7∶1)的高盐模拟废水作为单室MFC的底物,探讨了碳氮比对单室MFC产电性能、COD去除率以及同步硝化反硝化脱氮的影响,同时,通过高通量测序技术对接种泥和电极生物膜进行了检测,并对优势菌种进行了分析,以进一步为高盐含氮废水的处理提供参考。
碳氮比对高盐废水单室MFCs产电、污染物去除及微生物群落结构的影响
Effects of carbon-nitrogen ratio on electricity generation, pollutant removal and microbial community structure of single-chamber MFCs in high salinity wastewater
-
摘要: 构建了5套单室无膜空气阴极微生物燃料电池(microbial fuel cell,MFC),探讨了碳氮比对单室MFC产电及污染物去除效果的影响,并通过微生物高通量测序分析了电极生物膜的优势菌种。结果表明:当碳氮比分别是3∶1、4∶1、5∶1、6∶1和7∶1时,在产电性能方面,碳氮比的提高有利于电池电能的输出;当碳氮比为7∶1时,开路电压、内阻及最大功率密度分别为765 mV、78.4 Ω和7.33 W·m−3;单室MFCs可实现同步硝化反硝化脱氮,当碳氮比为4∶1时,污染物的去除效果最佳,COD、
${{\rm{NH}}_4^ +} $ -N和TN的去除率分别为(86.17±2.4)%、(96.98±1.8)%和(96.64±1.8)%。微生物测序结果表明,Thauera为单室MFCs的核心菌属,随碳氮比的升高,阴极生物膜中具有异养硝化功能的微生物丰度依次为35.72%、46.90%、40.17%、35.63%和21.38%;好氧反硝化菌的丰度分别为35.72%、52.60%、49.59%、45.08%和21.38%,由此推测,氮的去除以异养硝化-好氧反硝化途径为主。Abstract: In this study, five sets of single-chambered air cathode microbial fuel cells (MFC) were constructed. The effect of the carbon-nitrogen ratio on electricity generation and pollutant removal was discussed and the dominant strains in electrode biofilms were analyzed by high-throughput sequencing. The results showed that in terms of electricity generation performance, the increase of the carbon-nitrogen ratio was beneficial to the energy output at the carbon-nitrogen ratio of 3∶1, 4∶1, 5∶1, 6∶1 and 7∶1. When the carbon-nitrogen ratio was 7∶1, the open circuit voltage, internal resistance and maximum power density were 765 mV, 78.4 Ω and 7.33 W·m−3, respectively. Single-chamber MFCs could achieve simultaneous nitrification and denitrification, and the best removal effect of pollutants occurred at the carbon-nitrogen ratio of 4∶1, the corresponding removal rates of COD,${\rm{NH}}_4^ + $ -N and TN were (86.17± 2.4)%, (96.98±1.8)% and (96.64±1.8)%, respectively. Microbial sequencing results showed that Thauera was the core genus of single-chamber MFC. With the increase of carbon- nitrogen ratio, the abundances of heterotrophic nitrification microorganisms in the cathode biofilms were 35.72%, 46.90%, 40.17%, 35.63% and 21.38 % in turns. The abundances of aerobic denitrifying bacteria were 35.72%, 52.60%, 49.59%, 45.08% and 21.38%, respectively. It is speculated that the heterotrophic nitrification-aerobic denitrification was the main pathway for nitrogen removal. -
表 1 配水水质特征
Table 1. Quality of the synthetic medium
碳氮比 COD/(mg·L−1) 氨氮/(mg·L−1) TN/(mg·L−1) TP/(mg·L−1) 盐度/(g·L−1) pH 3∶1 397.50 131.53 132.31 40 15 7.0 4∶1 524.06 131.56 132.18 40 15 7.0 5∶1 652.19 131.53 132.28 40 15 7.0 6∶1 780.31 131.56 132.20 40 15 7.0 7∶1 911.56 131.53 132.31 40 15 7.0 表 2 5组MFCs的氨氮在不同阶段的去除速率
Table 2. Removal rate of ammonia in five MFCs at different stages
mg·(L·h)−1 运行阶段 氨氮去除速率 C/N=3∶1 C/N=4∶1 C/N=5∶1 C/N=6∶1 C/N=7∶1 第1阶段 5.48(0~8 h) 5.31(0~12 h) 4.78(0~8 h) 4.14(0~8 h) 0.94(0~20 h) 第2阶段 1.83(8~16 h) 2.04(12~28 h) 1.40(8~28 h) 0.96(8~44 h) 0.26(20~72 h) 第3阶段 3.18(16~24 h) 3.50(28~36 h) 2.24(28~48 h) 1.78(44~60 h) — 表 3 5组MFCs的COD在不同阶段的去除速率
Table 3. Removal rate of COD in five MFCs at different stages
mg·(L·h)−1 运行阶段 COD去除速率 C/N=3∶1 C/N=4∶1 C/N=5∶1 C/N=6∶1 C/N=7∶1 第1阶段 18.13(0~8 h) 15.63(0~16 h) 15.00(0~24 h) 18.68(0~28 h) 14.73(0~44 h) 第2阶段 7.19(8~24 h) 11.88(16~36 h) 6.25(24~48 h) 5.78(28~60 h) 9.34(44~72 h) -
[1] GRATTIERI M, MINTEER S D. Microbial fuel cells in saline and hypersaline environments: Advancements, challenges and future perspectives[J]. Bioelectrochemistry, 2018, 120: 127-137. doi: 10.1016/j.bioelechem.2017.12.004 [2] GUO F, FU G, ZHANG Z, et al. Mustard tuber wastewater treatment and simultaneous electricity generation using microbial fuel cells[J]. Bioresource Technology, 2013, 136: 425-430. doi: 10.1016/j.biortech.2013.02.116 [3] GAO F, PENG Y, LI C, et al. Simultaneous nutrient removal and biomass/lipid production by Chlorella sp. in seafood processing wastewater[J]. Science of the Total Environment, 2018, 640-641: 943-953. doi: 10.1016/j.scitotenv.2018.05.380 [4] 孙鹏飞. 皮革废水处理方法及清洁化生产[J]. 皮革与化工, 2012, 29(6): 28-30. doi: 10.3969/j.issn.1674-0939.2012.06.010 [5] TENDER L M, REIMERS C E, STECHER H R, et al. Harnessing microbially generated power on the seafloor[J]. Nature Biotechnology, 2002, 20(8): 821-825. doi: 10.1038/nbt716 [6] LIU H, CHENG S, LOGAN B E. Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration[J]. Environmental Science & Technology, 2005, 39(14): 5488-5493. [7] TREMOULI A, MARTINOS M, LYBERATOS G. The effects of salinity, pH and temperature on the performance of a microbial fuel cell[J]. Waste and Biomass Valorization, 2017, 8(6): 2037-2043. doi: 10.1007/s12649-016-9712-0 [8] 黄志鹏. 微生物燃料电池处理高盐含氮废水研究[D]. 杭州: 浙江大学, 2019. [9] 黄浩斌, 成少安. 单室空气阴极微生物燃料电池硝酸根去除系统的建立和性能研究[J]. 环境科学学报, 2019, 39(6): 1739-1747. [10] PISHGAR R, DOMINIC J A, TAY J H, et al. Pilot-scale investigation on nutrient removal characteristics of mineral-rich aerobic granular sludge: Identification of uncommon mechanisms[J]. Water Research, 2020, 168: 115151. doi: 10.1016/j.watres.2019.115151 [11] YANG N, ZHAN G, LI D, et al. Complete nitrogen removal and electricity production in Thauera-dominated air-cathode single chambered microbial fuel cell[J]. Chemical Engineering Journal, 2019, 356: 506-515. doi: 10.1016/j.cej.2018.08.161 [12] ZHANG L, FU G, ZHANG Z. Simultaneous nutrient and carbon removal and electricity generation in self-buffered biocathode microbial fuel cell for high-salinity mustard tuber wastewater treatment[J]. Bioresource Technology, 2019, 272: 105-113. doi: 10.1016/j.biortech.2018.10.012 [13] 黄菲菲. 异养硝化-好氧反硝化菌的筛选与脱氮性能研究[D]. 南京: 南京理工大学, 2013. [14] 乔龙胜. 不同底物对微生物燃料电池产电影响及电能收集研究[D]. 天津: 天津工业大学, 2017. [15] LIU H, CHENG S, LOGAN B E. Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell[J]. Environmental Science & Technology, 2005, 39(2): 658-662. [16] LIU H, LOGAN B E. Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane[J]. Environmental Science & Technology, 2004, 38(14): 4040-4046. [17] 詹亚力, 王琴, 张佩佩, 等. 微生物燃料电池影响因素及作用机理探讨[J]. 高等学校化学学报, 2008(1): 144-148. doi: 10.3321/j.issn:0251-0790.2008.01.028 [18] 郭亚婵. SBBR处理低盐废水效果及同步硝化反硝化效能研究[D]. 青岛: 中国海洋大学, 2014. [19] LAN M, LI M, LIU J, et al. Coal chemical reverse osmosis concentrate treatment by membrane-aerated biofilm reactor system[J]. Bioresource Technology, 2018, 270: 120-128. doi: 10.1016/j.biortech.2018.09.011 [20] HE T, GUAN W, LUAN Z, et al. Spatiotemporal variation of bacterial and archaeal communities in a pilot-scale constructed wetland for surface water treatment[J]. Applied Microbiology and Biotechnology, 2016, 100(3): 1479-1488. doi: 10.1007/s00253-015-7072-5 [21] WANG W, CAO L, TAN H, et al. Nitrogen removal from synthetic wastewater using single and mixed culture systems of denitrifying fungi, bacteria, and actinobacteria[J]. Applied Microbiology and Biotechnology, 2016, 100(22): 9699-9707. doi: 10.1007/s00253-016-7800-5 [22] MIURA Y, WATANABE Y, OKABE S. Significance of Chloroflexi in performance of submerged membrane bioreactors (MBR) treating municipal wastewater[J]. Environmental Science & Technology, 2007, 41(22): 7787-7794. [23] HUANG C, LI Z, CHEN F, et al. Microbial community structure and function in response to the shift of sulfide/nitrate loading ratio during the denitrifying sulfide removal process[J]. Bioresource Technology, 2015, 197: 227-234. doi: 10.1016/j.biortech.2015.08.019 [24] XIA Z, WANG Q, SHE Z, et al. Nitrogen removal pathway and dynamics of microbial community with the increase of salinity in simultaneous nitrification and denitrification process[J]. Science of the Total Environment, 2019, 697: 134047. doi: 10.1016/j.scitotenv.2019.134047 [25] WANG H, BISWAL B K, MAO Y, et al. Multiple-cycle operation of sulphur-cycle-enhanced biological phosphorus removal to maintain stable performance at high temperatures[J]. Bioresource Technology, 2019, 289: 121736. doi: 10.1016/j.biortech.2019.121736 [26] LI W, NIU Q, WU J, et al. Enhanced anaerobic performance and SMD process in treatment of sulfate and organic S-rich TMBA manufacturing wastewater by micro-electric field-zero valent iron-UASB[J]. Journal of Hazardous Materials, 2019, 379: 120695. doi: 10.1016/j.jhazmat.2019.05.088 [27] LAHME S, ENNING D, CALLBECK C M, et al. Metabolites of an oil field sulfide-oxidizing, nitrate-reducing Sulfurimonas sp. cause severe corrosion[J]. Applied and Environmental Microbiology, 2019, 85(3): 1-12. [28] DONG H, JIANG X, SUN S, et al. A cascade of a denitrification bioreactor and an aerobic biofilm reactor for heavy oil refinery wastewater treatment[J]. RSC Advances, 2019, 9(13): 7495-7504. doi: 10.1039/C8RA10510C [29] 刘雪洁. MBR中异养硝化-好氧反硝化脱氮性能的研究[D]. 大连: 大连理工大学, 2014. [30] XIE B, LIU B, YI Y, et al. Microbiological mechanism of the improved nitrogen and phosphorus removal by embedding microbial fuel cell in anaerobic-anoxic-oxic wastewater treatment process[J]. Bioresource Technology, 2016, 207: 109-117. doi: 10.1016/j.biortech.2016.01.090 [31] YANG J, WANG Y, CHEN H, et al. Ammonium removal characteristics of an acid-resistant bacterium Acinetobacter sp. JR1 from pharmaceutical wastewater capable of heterotrophic nitrification-aerobic denitrification[J]. Bioresource Technology, 2019, 274: 56-64. doi: 10.1016/j.biortech.2018.10.052 [32] PAN Z, ZHOU J, LIN Z, et al. Effects of COD/TN ratio on nitrogen removal efficiency, microbial community for high saline wastewater treatment based on heterotrophic nitrification-aerobic denitrification process[J]. Bioresource Technology, 2020, 301: 122726. doi: 10.1016/j.biortech.2019.122726 [33] JIANG Q, SONG X, LIU J, et al. Enhanced nutrients enrichment and removal from eutrophic water using a self-sustaining in situ photomicrobial nutrients recovery cell (PNRC)[J]. Water Research, 2019, 167: 115097. doi: 10.1016/j.watres.2019.115097 [34] LIU J, ZHANG P, LI H, et al. Denitrification of landfill leachate under different hydraulic retention time in a two-stage anoxic/oxic combined membrane bioreactor process: Performances and bacterial community[J]. Bioresource Technology, 2018, 250: 110-116. doi: 10.1016/j.biortech.2017.11.026 [35] WAN C, YANG X, LEE D, et al. Partial nitrification of wastewaters with high NaCl concentrations by aerobic granules in continuous-flow reactor[J]. Bioresource Technology, 2014, 152: 1-6. doi: 10.1016/j.biortech.2013.10.112 [36] YIN S, LI J, DONG H, et al. Enhanced nitrogen removal through marine anammox bacteria (MAB) treating nitrogen-rich saline wastewater with Fe(III) addition: Nitrogen shock loading and community structure[J]. Bioresource Technology, 2019, 287: 121405. doi: 10.1016/j.biortech.2019.121405 [37] 王威. 海水循环水养殖系统中生物滤料的微生物挂膜与水处理效果研究[D]. 青岛: 中国海洋大学, 2012. [38] KAMARISIMA, MIYANAGA K, TANJI Y. The utilization of aromatic hydrocarbon by nitrate- and sulfate-reducing bacteria in single and multiple nitrate injection for souring control[J]. Biochemical Engineering Journal, 2019, 143: 75-80. doi: 10.1016/j.bej.2018.12.006 [39] QIAN J, ZHANG M, JING R, et al. Thiosulfate as the electron acceptor in sulfur bioconversion-associated process (SBAP) for sewage treatment[J]. Water Research, 2019, 163: 114850. doi: 10.1016/j.watres.2019.07.017 [40] PLATEN H, TEMMES A, SCHINK B. Anaerobic degradation of acetone by Desulfococcus biacutus spec. nov[J]. Archives of Microbiology, 1990, 154(4): 355-361. doi: 10.1007/BF00276531 [41] LIU J, WANG X, WANG Z, et al. Integrating microbial fuel cells with anaerobic acidification and forward osmosis membrane for enhancing bio-electricity and water recovery from low-strength wastewater[J]. Water Research, 2017, 110: 74-82. doi: 10.1016/j.watres.2016.12.012 [42] WU M, XU X, LU K, et al. Effects of the presence of nanoscale zero-valent iron on the degradation of polychlorinated biphenyls and total organic carbon by sediment microbial fuel cell[J]. Science of the Total Environment, 2019, 656: 39-44. doi: 10.1016/j.scitotenv.2018.11.326 [43] HUANG H, BISWAL B K, CHEN G, et al. Sulfidogenic anaerobic digestion of sulfate-laden waste activated sludge: Evaluation on reactor performance and dynamics of microbial community[J]. Bioresource Technology, 2020, 297: 122396. doi: 10.1016/j.biortech.2019.122396