-
缅甸具有优越的地理位置,其西部毗邻孟加拉湾,北部同我国云南省接壤,拥有重要的地缘战略优势。缅甸还是我国通向印度洋的海上通道之一,因此,成为连接“21世纪海上丝绸之路”和“丝绸之路经济带”的重要纽带。当前正是中缅两国共建中缅经济走廊的重要节点,加快缅甸基础民生设施建设成为双方合作的重要内容。目前,缅甸农村地区的环境建设与民生设施落后,导致饮用水安全问题极为突出。缅甸全国5.4×107人口中约80%无法获得集中供水[1]。而在偏远的山区和农村,饮用水安全问题更加严重,腹泻、痢疾和伤寒等水源性疾病频繁爆发。部分农村地区的饮用水还存在较为严重的砷、锰、铁等金属离子及氟化物超标情况[2-3]。因此,为解决缅甸农村地区的饮用水问题,首先应明确影响饮用水安全的关键因素和风险因子。
在缅甸众多地区中,若开邦是饱受不安全饮用水威胁最严重的地区之一。若开邦位于缅甸西海岸,该地区地下水丰富,埋深较浅。然而,因为靠近海洋,该地区部分地下水口感不佳,且大规模开采地下水会造成海水入侵。同时,若开邦地区河流众多,但受潮汐影响,大部分河流为咸水河;部分淡水河流含泥沙量较大,且受沿岸村民生活所污染,水质较差,无法直接用作饮用水。若开邦地区为热带季风气候。当地雨水资源极为丰富,是主要的天然饮用水水源。若开邦地区人民主要利用水塘蓄积雨水,由于水塘规模较小,系统承载能力有限,雨季、旱季恶劣的气候条件对水质的冲击较大。加上当地的水塘系统缺少必要的安全保护措施,水塘里的水质存在诸多安全隐患。
近年来,由于若开邦地区避乱返家的人口急剧增加,造成了饮用水安全问题加剧。目前,若开邦农村地区普遍存在饮用水短缺、水质不安全等问题。因此,在当地开展饮用水民生项目,解决迫在眉睫的饮用水安全问题具有重要意义。本研究以缅甸若开邦农村地区为对象,结合实地调研和采样分析,揭示当地饮用水源的水量和水质风险特征,进而提出水塘生态防护和提供安全饮用水的可行方案,为其他与若开邦气候环境相似的沿海地区,以及“一带一路”沿线的东南亚、南亚国家利用水塘蓄积雨水解决饮用水危机提供经验。
缅甸若开邦农村地区饮用水现状及安全保障对策
Current status and safety strategies of drinking water provision in the rural area of Rakhine State, Myanmar
-
摘要: 以东南亚国家缅甸的若开邦农村地区为研究对象,分析该地区饮用水存在的主要问题,并结合当地实际情况提出了可行的安全保障对策。实地考察发现:水塘是缅甸若开邦农村地区主要的饮用水水源;然而,若开邦地处热带,雨季降雨量巨大且集中,旱季持续时间长,水分蒸发量较大,水塘水量时间分布极不均匀,导致该地区水塘旱季时供水严重不足;雨季水塘水浊度、色度偏高,旱季铝、锰、铁等离子有超标现象;水塘普遍缺少生态拦截和防护措施,亦疏于维护,不能有效地阻隔周边的面源污染,导致当地水塘水质存在严重的安全隐患。结合当地社会经济发展水平和村民生活习惯,提出了适于热带地区干湿强烈交替气候特点的“塘-沟-植被缓冲带”生态水塘方案。采用多级屏障手段发挥生态水塘系统对地表和亚表层径流的生态过滤效应,从而增加储水空间,扩大水源涵养容量,强化水体自净功能,再搭配低维护、低能耗的净水工艺,可从水量和水质2个方面保障当地饮用水安全。提出了小而美的生态净化技术,可为其他有类似饮用水问题的国家和地区提供参考。Abstract: In this study, the current status of source water in the rural area of Rakhine state, Myanmar, was investigated with feasible strategies customized to address the challenges encountered in water supply. The filed investigation reflected that in the rural area of Rakhine source water is mainly derived from natural ponds. In addition, Rakhine state is located in the tropical area with an abundant and concentrated rainfall during the rainy season, while the dry season lasts for a long time with considerable evaporation rate, resulting in a disproportional temporal distribution of water quantity in ponds. According to the measurement of the pond water samples, the turbidity and color of pond water were high during the rainy season, while the concentrations of aluminum, manganese, and iron exceeded the World Health Organization’s drinking water standards during dry season. It showed that the ponds in the investigated area generally lack necessary ecological interception, protection, and maintenance, which could not effectively decrease the nonpoint source pollution. The above mentioned results suggested that the local environmental and quality of life were severely affected due to the lack of drinking water supply with sufficient quantity and high quality. Considering local social and economic development levels and the local habits of villagers, the onsite ecological purification scheme of “pond-ditch-vegetative buffer zone” was put forward, which is suitable for rainy and dry seasons in tropical areas. This multi-barrier approach can effectively intercept and mitigate the surface and subsurface runoff, while it can also increase storage space of the system, and thereby expanding water conservation capacity, and strengthening the self-purification function of natural ecosystems. Finally, a promising water purification process configuration with merits of low maintenance and low energy consumption was proposed to ensure the safety of local drinking water supply.
-
Key words:
- Rakhine state /
- pond /
- ecological purification /
- drinking water /
- water quantity and quality
-
表 1 布朗水质指数等级与对应水体的水质情况
Table 1. Brown Water Quality Index level and water quality status
布朗水质指数等级 水体水质情况 0~25 水质极好 26~50 水质较好 51~75 水质较差 76~100 水质极差 >100 不适合饮用 表 2 若开邦农村地区地下水与河流地表水检测结果
Table 2. Water quality test results of well and river in rural areas in Rakhine
水样
编号浊度/
NTU色度/
度温度/
℃溶解氧/
(mg·L−1)电导率/
(μS·cm−1)盐度/
‰总硬度/
(mg·L−1)pH 氨氮/
(mg·L−1)TOC/
(mg·L−1)硫酸盐/
(mg·L−1)水井1 1.0 11.0 — — 161 — 45.0 7.83 0.03 0.90 9.85 水井2 504 1 147.0 — — 194 — 3.2 6.73 0.03 1.70 13.68 水井3 18.2 136.0 31.35 4.08 2 494 1.27 321.0 4.99 0.04 1.25 14.96 水井4 21.1 140.0 30.05 4.04 863 0.42 57.0 6.37 0.03 3.99 9.26 水井5 8.69 90.0 — — 148 0.07 52.0 5.71 0.35 0.49 29.93 水井6 6.8 113.0 — — 192 0.07 38.0 5.58 0.44 0.55 23.98 河流1 42.3 297.0 — — 688 0.46 121.0 6.84 0.48 6.36 54.7 WHO饮用水标准 5 15 无 无 无 无 500.0 6.50~8.50 1.50 5.00 250 水样
编号氯化物/
(mg·L−1)氟化物/
(mg·L−1)铝/
(μg·L−1)铬/
(μg·L−1)锰/
(μg·L−1)铁/
(μg·L−1)铜/
(μg·L−1)锌/
(μg·L−1)砷/
(μg·L−1)镉/
(μg·L−1)铅/
(μg·L−1)水井1 12.69 0.22 0.60 4.00 499.0 0.9 0.10 0.79 0.54 0.06 0.07 水井2 25.11 0.06 0.60 4.00 745.0 4 686 0.24 1.90 0.64 0.06 0.07 水井3 16.30 0.39 3.48 0.44 111.0 9.7 0.70 5.12 1.40 0.14 0.14 水井4 4.14 0.43 2.06 0.51 18.0 8.0 1.41 6.77 1.08 0.10 0.14 水井5 11.36 0.00 1 249.0 11.47 75.4 1 007.0 2.07 94.70 21.64 0.04 2.16 水井6 9.92 0.00 1 621.0 12.90 772.0 1 680.0 3.70 87.32 1.60 0.07 0.82 河流1 21.11 0.00 398.0 14.6 378.0 1 731.0 3.78 54.15 1.74 0.14 4.16 WHO饮用水标准 250 1.50 200.0 50.00 50.0 300.0 2 000 3 000 10.00 3.00 10.00 注:“—”表示未测定。由于考察现场条件苛刻,仅对水井1样品进行总大肠菌群检测,检测结果为20 MPN·(100 mL)−1。 表 3 若开邦农村地区水塘水质检测结果
Table 3. Water quality test results of ponds in rural areas in Rakhine
水样
编号浊度/
NTU色度/
度温度/
℃溶解氧/
(mg·L−1)电导率/
(μS·cm−1)盐度/
‰总硬度/
(mg·L−1)pH 氨氮/
(mg·L−1)TOC/
(mg·L−1)硫酸盐/
(mg·L−1)1 13.4 52 — — 108 — 23.0 7.76 0.16 3.80 1.39 2 10.9 81 — — 76 — 34.0 7.76 0.03 5.00 1.74 3 4.3 177 30.34 4.64 851 0.58 59.3 6.4 0.03 1.35 23.85 4 8.3 154 31.84 5.64 566 0.27 47.7 6.35 0.03 1.85 6.50 5 45.9 485 27.08 5.23 294 0.14 29.4 7.18 0.03 1.71 39.02 6 10.9 111 31.8 4.27 853 0.41 77.1 7.07 0.17 0.75 6.45 7 12.6 147 25.8 5.81 141 0.07 42.0 6.54 0.26 1.56 42.19 8-1 41.7 894 31.67 5.58 320 0.14 42.1 6.98 0.10 3.51 6.39 8-2 2.0 28 25.8 5.22 314 0.15 103.0 7.56 0.08 2.32 39.34 9-1 18.6 333 31.22 4.62 682 0.33 79.2 7.37 0.07 1.10 31.41 9-2 0.7 15 26.5 4.70 284 0.13 120.0 7.02 0.10 1.87 50.15 WHO饮用水标准 5.0 15 无 无 无 无 500.0 6.50~8.50 1.50 5.00 250 水样
编号氯化物/
(mg·L−1)氟化物/
(mg·L−1)铝/
(μg·L−1)铬/
(μg·L−1)锰/
(μg·L−1)铁/
(μg·L−1)铜/
(μg·L−1)锌/
(μg·L−1)砷/
(μg·L−1)镉/
(μg·L−1)铅/
(μg·L−1)1 1.34 0.07 0.70 0.18 0.22 3.50 1.49 0.79 1.18 0.06 0.18 2 5.86 0.12 0.58 0.07 0.52 8.10 0.67 0.79 1.25 0.06 0.07 3 10.10 0.53 0.87 0.08 0.08 3.97 0.28 0.61 0.11 0.08 0.14 4 3.21 0.18 0.86 0.08 0.07 13.61 0.28 0.61 0.11 0.08 0.12 5 2.32 0.30 115.00 0.33 18.76 96.63 0.80 10.39 0.59 0.10 0.14 6 3.61 0.16 1 037.00 2.27 1 026.00 641.00 1.53 4.41 0.99 0.09 0.08 7 10.79 0 1 428.00 12.43 480.00 1 369.00 1.73 31.49 1.33 0.05 0.74 8-1 1.04 0.39 165.00 0.65 1.15 190.23 1.55 2.60 0.85 0.09 0.14 8-2 4.75 0 427.00 9.46 15.35 7 657.00 4.49 48.76 1.49 0.23 4.22 9-1 3.19 0.51 0.87 0.08 0.08 1.16 0.28 0.61 0.09 0.08 0.12 9-2 3.36 0 115.00 12.97 0.54 647.00 2.47 99.79 1.51 0.02 0.77 WHO饮用水标准 250 1.50 200 50 50 300 2 000 3 000 10.00 3.00 10.00 注:“—”表示未测定;由于考察现场条件苛刻,仅对水样1、2的总大肠菌群、耐热大肠菌群及大肠埃希氏菌浓度进行检测,发现水样1总大肠菌群、耐热大肠菌群及大肠埃希氏菌浓度分别为591、20、4 MPN·(100 mL)−1;水样2总大肠菌群、耐热大肠菌群及大肠埃希氏菌浓度分别为1091、40、20 MPN·(100 mL)−1。 -
[1] 王为东, 栾富波, TI MAR A, 等. 缅甸饮用水安全保障[J]. 人与生物圈, 2019(3): 26-29. doi: 10.3969/j.issn.1009-1661.2019.03.006 [2] TUN T N. Arsenic contamination of water sources in rural Myanmar[EB/OL]. [2020-06-01]. 2003. https://hdl.handle.net/2134/29875. [3] BACQUART T, FRISBIE S, MITCHELL E, et al. Multiple inorganic toxic substances contaminating the groundwater of Myingyan Township, Myanmar: Arsenic, manganese, fluoride, iron, and uranium[J]. Science of the Total Environment, 2015, 517: 232-245. doi: 10.1016/j.scitotenv.2015.02.038 [4] BROWN R M, MCCLELLAND N I, DEININGER R A, et al. A water quality index: Crashing the psychological barrier[M]//Indicators of Environmental Quality. Springer, Boston, MA, 1972: 173-182. [5] World Health Organization. Guidelines for Drinking-Water Quality[M]. Geneva: World Health Organization, 1993. [6] TRIPATHY J K, SAHU K C. Seasonal hydrochemistry of groundwater in the Barrier Spit system of the Chilika Lagoon, India[J/OL]. [2020-06-01]. Journal of Environmental Hydrology, 2005, 13. http://www.hydroweb.com/protect/pubs/jeh/jeh2005/tripathy.pdf. [7] ISLAM M S, AZADI M A, NASIRUDDIN M. Water quality of three ponds of chittagong university campus using water quality index[J]. Global Scientific Journal, 2019, 7(12): 1229-1251. [8] 中国水利学会. 农村饮用水安全评价准则: T/CHES 18-2018[S/OL]. [2020-06-01]. 北京: 全国标准信息平台. http://www.jsgg.com.cn/Files/PictureDocument/20180531114719839621788690.pdf. [9] 姜欣, 朱林, 许士国, 等. 水源水库季节性分层及悬浮物行为对铁锰迁移的影响: 以辽宁省碧流河水库为例[J]. 湖泊科学, 2019, 31(2): 375-385. doi: 10.18307/2019.0207 [10] THIRUPATHAIAH M, SAMATHA C H, SAMMAIAH C. Analysis of water quality using physico-chemical parameters in lower manair reservoir of Karimnagar district, Andhra Pradesh[J]. International Journal of Environmental Sciences, 2012, 3(1): 172-180. [11] 陈庆华, 俞新峰, 王为东. 石臼漾水源生态湿地工程的水质改善效果[J]. 中国给水排水, 2013, 29(1): 43. doi: 10.3969/j.issn.1000-4602.2013.01.011 [12] 刘洋, 付强, 陆海明, 等. 农业流域中不同类型水塘沉积物磷素状态及其环境意义[J]. 环境化学, 2013, 32(12): 2307-2314. doi: 10.7524/j.issn.0254-6108.2013.12.013 [13] 王为东, 王亮, 聂大刚, 等. 白洋淀芦苇型水陆交错带水化学动态及其净化功能研究[J]. 生态环境学报, 2010, 19(3): 537-543. doi: 10.3969/j.issn.1674-5906.2010.03.007 [14] 汪仲琼, 张荣斌, 陈庆华, 等. 人工湿地植物床-沟壕系统水质净化效果[J]. 环境科学, 2012, 33(11): 3804-3811. [15] HUISMAN L, WOOD W E. Slow Sand Filtration[M]. Geneva: World Health Organization, 1974. [16] GUCHI E. Review on slow sand filtration in removing microbial contamination and particles from drinking water[J]. American Journal of Food and Nutrition, 2015, 3(2): 47-55. [17] BAHGAT M, DEWEDAR A, ZAYED A. Sand-filters used for wastewater treatment: Buildup and distribution of microorganisms[J]. Water Research, 1999, 33(8): 1949-1955. doi: 10.1016/S0043-1354(98)00290-5 [18] ELLIS K V, WOOD W E. Slow sand filtration[J]. Critical Reviews in Environmental Control, 1985, 15(4): 315-354. doi: 10.1080/10643388509381736 [19] FOGEL D, ISAAC-RENTON J, GUASPARINI R, et al. Removing Giardia and Cryptosporidium by slow sand filtration[J]. Journal-American Water Works Association, 1993, 85(11): 77-84. doi: 10.1002/j.1551-8833.1993.tb06105.x [20] KEIJOLA A M, HIMBERG K, ESALA A L, et al. Removal of cyanobacterial toxins in water treatment processes: Laboratory and pilot-scale experiments[J]. Toxicity Assessment, 1988, 3(5): 643-656. doi: 10.1002/tox.2540030516 [21] ZHAO Y, WANG X, LIU C, et al. Purification of harvested rainwater using slow sand filters with low-cost materials: Bacterial community structure and purifying effect[J]. Science of the Total Environment, 2019, 674: 344-354. doi: 10.1016/j.scitotenv.2019.03.474 [22] SHAHEED R, MOHTAR W H M W, EL-SHAFIE A. Ensuring water security by utilizing roof-harvested rainwater and lake water treated with a low-cost integrated adsorption-filtration system[J]. Water Science and Engineering, 2017, 10(2): 115-124. doi: 10.1016/j.wse.2017.05.002