聚氨酯和聚碳酸酯制造过程的恶臭排放特征和指纹谱

陈凌霄, 修光利, 黄银芝. 聚氨酯和聚碳酸酯制造过程的恶臭排放特征和指纹谱[J]. 环境工程学报, 2021, 15(2): 755-764. doi: 10.12030/j.cjee.202005008
引用本文: 陈凌霄, 修光利, 黄银芝. 聚氨酯和聚碳酸酯制造过程的恶臭排放特征和指纹谱[J]. 环境工程学报, 2021, 15(2): 755-764. doi: 10.12030/j.cjee.202005008
CHEN Lingxiao, XIU Guangli, HUANG Yinzhi. Characteristics and fingerprint spectra of odor pollutants emitted from typical production process of polyurethane and polycarbonate[J]. Chinese Journal of Environmental Engineering, 2021, 15(2): 755-764. doi: 10.12030/j.cjee.202005008
Citation: CHEN Lingxiao, XIU Guangli, HUANG Yinzhi. Characteristics and fingerprint spectra of odor pollutants emitted from typical production process of polyurethane and polycarbonate[J]. Chinese Journal of Environmental Engineering, 2021, 15(2): 755-764. doi: 10.12030/j.cjee.202005008

聚氨酯和聚碳酸酯制造过程的恶臭排放特征和指纹谱

    作者简介: 陈凌霄(1997—),女,硕士研究生。研究方向:恶臭污染分布与排放特征。E-mail:chenlx1997@126.com
    通讯作者: 修光利(1972—),男,博士,教授。研究方向:大气环境科学与工程。E-mail:xiugl@ecust.edu.cn
  • 基金项目:
    上海市生态环境局“长三角生态环境地方立法比较研究和标准一体化研究”资助项目
  • 中图分类号: X512

Characteristics and fingerprint spectra of odor pollutants emitted from typical production process of polyurethane and polycarbonate

    Corresponding author: XIU Guangli, xiugl@ecust.edu.cn
  • 摘要: 聚氨酯和聚碳酸酯制造属于典型的石油化工行业。制造过程中的恶臭排放是石化行业的重要的污染问题。采用气相色谱质谱联用(GC-MS)方法对聚氨酯和聚碳酸酯制造过程中的臭气排放特征和指纹谱进行研究。在所采集的样品中共定量分析了96种物质,其中芳香烃、烷烃和有氧烃的含量最高。结合物质含量与阈稀释倍数分析,将乙酸丁酯、甲苯、1-丁烯、苯乙烯、乙苯识别为主要的特征污染物,发现各样品的理论臭气浓度远低于我国国家标准和各地方标准中管控的臭气浓度限值。从定量分析的96种物质中筛选出20种作为指纹谱指标物质,根据其归一化浓度绘制各采样点的指纹谱,同时利用移动监测车在各排气筒下风向100~300 m处的连续监测结果对指纹谱进行初步验证。本研究得出指纹谱的科学性与准确性,可为石化行业的恶臭污染管理提供参考。
  • 随着我国城镇化进程和新农村建设的不断推进,村镇生活污水排放量也在逐渐增长。考虑到农村地区对优美生态环境的客观需要,有针对性地对农村污水进行治理是社会发展的必然趋势。目前,我国农村污水处理方式主要包括两类:一是靠近城镇排水管道的,纳入排水管道处理,通过管网将农户污水收集并统一处理;二是采用小型污水处理设备,以及自然生态处理等形式将单户或几户的污水就近处理利用[1]。相对于城镇污水而言,农村污水具有以下特点:污水来源复杂,不同地区的排放强度及规律各有差异;农村污水水量波动较为明显;村镇规模相对较小,且分布极为分散,不利于将污水集中处理;污水排放量不稳定,夜间排放量可以忽略[2]。这些不利因素对农村污水的高效治理构成了巨大挑战。

    2018年9月29日,住建部和生态环境部联合发布了《关于加快制定地方农村生活污水处理排放标准的通知》[3]。通知提到,农村生活污水500 m3·d−1以上规模(含500 m·d−1)的农村生活污水处理设施可参照执行《城镇污水处理厂污染物排放标准》(GB 18918-2002)[4]执行;而处理规模在500 m3·d−1以下的农村生活污水处理设施,由各地可根据实际情况进一步确定具体处理规模标准。在此政策基础上,各省市纷纷制定了各自地方的排放标准。有些地方标准相对宽松,但有些却比较严格,对氮磷要求很高,例如北京市、天津市等。

    根据《室外排水设计规范》[5],为了达到良好的脱氮效果,要求进水的BOD5/TKN宜大于4,而农村污水常常不满足这一要求。农村污水浓度往往较低,低浓度生活污水对生物脱氮影响的后果往往是出水总氮(TN)不达标[6]。其原因主要包括:雨污水合流的稀释作用、地下水渗入稀释作用、化粪池的不合理设置等[7-8]。为了满足日益严格的TN出水标准,尽管外加碳源一定程度上加重了污水厂的经济负担。但是,在缺氧区投加碳源是一条最为稳妥的方法,也是目前不同运营单位最常采用的一种方法。不同污水厂(站)在外加碳源时,采用的外加碳源不尽相同。选择合适的碳源,确定适合的碳源投加量是保证村镇低浓度污水处理达标排放的一条重要途径。

    对于农村污水而言,虽然处理工艺具有一定的差异,但主要脱氮原理基本上仍为传统的硝化-反硝化过程。其中,COD与磷酸盐浓度可分别通过曝气以及投加沉淀剂的方式达到排放标准,而脱氮过程则难以通过投加药剂这种立竿见影的形式迅速达标。因此,在农村污水处理的过程中,面临的主要困境往往是出水TN无法达标,为此需要进行深入研究,探究适宜的碳源类型。反硝化菌对不同类型有机物的代谢方式具有差异,其代谢速率各不相同;且不同反硝化菌属最适利用的碳源种类同样具有差异,投加不同种类的碳源可富集不同的反硝化菌属。为摸清不同碳源作为补充碳源对反硝化过程脱氮效果的影响,本研究采用乙酸钠、乙醇、葡萄糖和蔗糖作为碳源,对不同的反硝化过程的脱氮效果进行了探究。本研究可为农村污水处理过程中选用外加碳源的种类提供参考依据。

    实验装置采用4组SBR,用以驯化和培养反硝化污泥。其有效容积均为4.8 L,装置结构如图1所示。 SBR通过自控装置每天运行6个周期,每个周期包括:进水(10 min)→缺氧反应(160 min)→曝气(10 min)→沉淀(30 min)→排水/闲置(15 min)→搅拌(15 min)。缺氧段采用电动搅拌器搅拌,转速为96 r·min−1。曝气段采用曝气头曝气,控制DO在1.5~2 mg·L−1。设置曝气段的目的为,反硝化细菌体内某些酶只有在有氧条件下才能合成[9];同时,曝气可以吹脱缺氧阶段产生的氮气,提高反硝化污泥的沉降性能。在下一个周期之前15 min开始搅拌以恢复反硝化细菌活性,使反硝化细菌保持最佳状态。每个周期排出1.6 L处理过的废水,并用蠕动泵泵入1.6 L人工配水,水力停留时间(HRT)=12 h。每天定时在搅拌结束后曝气开始前排一次泥,保证SRT为10 d左右。反应装置由定时装置控制周期循环运行。

    图 1  SBR实验装置
    Figure 1.  Equipment of SBR

    以乙酸钠、乙醇和葡萄糖为碳源的反硝化污泥接种北京某污水厂二沉池回流污泥;以蔗糖为碳源的反硝化污泥接种于已经驯化成功的以乙酸钠为碳源的反硝化污泥。将种泥按比例稀释,使得MLSS为1500 mg·L−1左右。

    SBR采用人工配水,分别以乙酸钠、乙醇、蔗糖和葡萄糖作为碳源,分别维持乙酸钠、乙醇、葡萄糖、蔗糖4种碳源的碳氮比为4.5、5、6.5、6.5,以获得活性污泥的最佳驯化效果。硝酸钠为氮源。磷酸二氢钠为磷源。由于自来水里含有微生物生长所需的微量元素,故不再另外投加。进水水质主要指标如表1所示。

    表 1  不同水质条件下的COD与NO3-N浓度
    Table 1.  COD and NO3-N concentration under different water quality
    碳源类型COD/(mg·L−1)-N /(mg·L−1)COD∶N
    乙酸钠4501004.5
    乙醇5001005
    葡萄糖6501006.5
    蔗糖6501006.5
     | Show Table
    DownLoad: CSV

    批次实验的反硝化污泥混合液分别取于稳定运行的SBR曝气之后,取出的污泥经沉淀、离心去除上清液,加入清水后再次进行沉淀、离心、去除上清液,重复上述步骤至少3次,以确保污泥中不再残留化学物质。将去除上清液后的污泥置于500 mL广口瓶中,加入不含NO3-N和COD的配水液,摇晃均匀以配成悬浮液。

    用HCl或NaOH稀溶液调节pH为6.5,并向瓶中持续通入5 min氮气以去除混合液中氧气,之后将插有两根橡胶管的瓶塞将瓶口密封。2根橡胶管只有在取气样、水样时打开,其他时候均用夹子夹住。将NO3-N和COD按SBR配水浓度分别配成50 mL浓缩液,在反应开始时,立即注射入广口瓶中,并将广口瓶置于磁力搅拌器上进行搅拌,转速为150 r·min−1。按原SBR的典型周期进行批次实验,温度为22 ℃,反硝化污泥在缺氧条件下运行,时间为160 min。 其中,反硝化速率按照式(1)计算。

    V=C0C1CMLVSS·t (1)

    式中:V为反硝化速率,g·(g·h)−1C0为起始NO3-N或NO2-N浓度,g·L−1C1为终点NO3-N或NO2-N浓度,g·L−1CMLVSS为混合液体挥发性悬浮固体浓度,g·L−1t为反应时间,h。

    活性污泥驯化阶段,每天定时在曝气前取1次水样,检测其NO3-N、COD、pH;并在曝气前和曝气中分别检测DO,以确保反硝化系统正常运行。

    MLSS,MLVSS采用重量法;NH+4-N采用纳氏试剂分光光度法;NO3-N采用紫外分光光度法;NO2-N采用N-(1萘基)-乙二胺光度法;COD采用重铬酸钾法[10]。温度采用水银温度计测定;pH采用pHTestr 30型pH计测定;溶解氧采用Multi 3620 WTW型溶解氧仪测定。

    以乙酸钠、乙醇、葡萄糖和蔗糖为有机碳源时,认定单周期过程结束后,若反应器出水中不包含NO3-N以及NO2-N时,则反硝化菌驯化完全。反应器的反硝化脱氮效果达到稳定的时间如表2所示。由表2可知,乙酸钠的驯化时间最短,蔗糖的驯化时间最长,驯化时间大约为乙酸钠的2倍。有研究[11]表明,相对于乙醇、葡萄糖和蔗糖而言,反硝化细菌对乙酸的降解要更为容易,故反硝化细菌对于乙酸钠的适应性更强,所需的驯化时间则相对较短。

    表 2  反硝化细菌的驯化时间
    Table 2.  Period for domestication of denitrifying bacteria
    碳源类型驯化时间/dMLSS/(g·L−1)MLVSS/(g·L−1)MLVSS∶MLSS
    乙酸钠172.651.980.746
    乙醇243.282.560.78
    葡萄糖262.752.230.812
    蔗糖304.43.50.795
     | Show Table
    DownLoad: CSV

    以乙酸钠为碳源时, NH+4-N、NO3-N、NO2-N和N2O的变化情况如图2所示。以乙酸钠为碳源时,NO3-N迅速得到降解,在60 min内全部被反硝化完毕。这说明,硝酸盐的还原呈现零级反应[12]。平均比反硝化速率为0.050 g·(g·h)−1

    图 2  乙酸钠为碳源条件下反应器内各指标的变化
    Figure 2.  Variations of indices in reactor with sodium acetate as carbon source
    图 3  乙醇为碳源条件下反应器内各指标的变化
    Figure 3.  Variations of indices in reactor with ethanol as the carbon source
    图 4  葡萄糖为碳源条件下反应器内各指标的变化
    Figure 4.  Variations of indices in reactor with glucose as carbon source

    NO2-N浓度先增加后减少。在反应开始50 min内,NO2-N浓度逐渐增加;待反应器内NO3-N几乎被耗尽后,积累值达到最大23.2 mg·L−1;此后,NO2-N浓度逐渐下降为0。这表明,在反硝化时,硝酸盐还原速率大于亚硝酸盐的还原速率,导致亚硝酸盐的积累,最高亚硝酸盐积累率23.2%,因为碳源充足,反应器出水中NO2-N累积将会消失。

    反应周期内,气态的N2O总量为0.002 8 mg·L−1,溶解态N2O积累量出现2个峰值,分别出现在10 min和50 min,其值为1.23 mg·L−1和1.60 mg·L−1,N2O的产生源于亚硝酸盐的还原。后期N2O没有继续升高,亚硝酸盐还原速率与N2O还原速率基本稳定,而少量的N2O是因为溶液中没有溢出所致。

    反应中,NH+4-N浓度几乎保持稳定,说明NH+4-N浓度变化可以忽略。

    以乙醇为碳源时,各个指标的变化情况如图3所示。以乙醇为碳源时,与乙酸钠为碳源时相似,NO3-N在70 min内迅速被反硝化完毕,平均比反硝化速率为0.031 g·(g·h)−1NO2-N浓度在70 min内达到最大值19.5 mg·L−1,即最高亚硝酸盐积累率19.5%;此后,NO2-N浓度逐渐下降为0。

    NH+4-N浓度几乎保持稳定。气态的N2O总量为0.001 mg·L−1。溶解态N2O积累量在20 min内迅速升高到0.63 mg·L−1;之后缓慢升高到极大值1.25 mg·L−1;此后开始缓慢下降,至反应结束,浓度为0.67 mg·L−1

    以葡萄糖为碳源时,各个指标的变化情况如图4所示。以葡萄糖为碳源时,NO3-N迅速得到降解,在80 min内全部被反硝化完毕,平均比反硝化速率为0.034 g·(g·h)−1。在0~140 min内,NO2-N浓度先增加后减少。在70 min内,NO2-N积累值达到42.5 mg·L−1,最高亚硝酸盐积累率42.5%;此后,NO2-N浓度逐渐下降为0。NH+4-N浓度在反应期间维持稳定。反应周期内气态N2O总量为0.023 mg·L−1。溶解态N2O首先缓慢增加后开始下降。0~110 min内,N2O浓度逐渐积累至5.43 mg·L−1,之后开始下降。

    以蔗糖为碳源时,各个指标变化情况如图5所示。以蔗糖为碳源时,NO3-N在70 min内全部被反硝化完毕,平均比反硝化速率为0.026 g·(g·h)−1NO2-N的最大积累值为7 mg·L−1,最高亚硝酸盐积累率7.0%,最终NO2-N也逐渐变为0。

    图 5  蔗糖为碳源条件下反应器内各指标的变化
    Figure 5.  Variations of indices in reactor with sucrose as the carbon source

    NH+4-N浓度在反应期间浓度保持稳定。气态N2O总量为0.002 5 μg·L−1。与乙醇为碳源时相似,溶解态N2O积累量在10 min内迅速升高到0.44 mg·L−1,之后缓慢升高到极大值0.66 mg·L−1,此后保持稳定。

    在传统的城市污水处理过程中,往往采用硝化-反硝化工艺,其中氮磷的有效去除依赖于进水有机物的充分供给。农村污水的进水有机物浓度普遍较低,在处理低浓度污水的农村污水处理设施当中,进水COD浓度往往低于250 mg·L−1,BOD5则通常低于100 mg·L−1;此时,污水厂的同步脱氮除磷效果会由于反硝化菌与聚磷菌对于有机物的竞争过程而恶化,尤其不利于出水TN去除,甚至NH+4-N也无法满足排放标准[13]。因此,农村污水的脱氮过程更依赖于外加碳源的投加,选择合适的外加碳源有利于反硝化过程顺利进行,保证农村污水处理设施出水氮素的达标排放。

    硝酸盐还原包括同化反硝化和异化反硝化两大类。其中,同化反硝化最终形成有机氮化合物;异化反硝化中,包括常规反硝化和异化反硝化为氨两种路径(dissimilatory nitrate reduction to ammonium,DNRA)[14]。常规反硝化过程中,硝酸盐按照式(1)的路径[15-16]还原为氮气,依次由硝酸盐还原酶、亚硝酸盐还原酶、一氧化氮还原酶、氧化亚氮还原酶完成。

    NO3NO2NON2ON2 (1)

    本实验中,在不同碳源条件下,NH+4-N浓度变化情况基本相似,即反应期间保持稳定。有研究[17]表明,在反硝化过程中,NH+4-N和NO2-N浓度都会发生显著变化。这是因为,在某些特定环境(氧化还原电位小于-200 mV、低DO、氮源受限而碳源丰富等)下,反硝化过程除了由NO3-N向氮气转化的异化性硝酸盐还原路径之外,还会发生由DNRA作用[15],同时某些特定反硝化菌群只具备DNRA能力[18]。YANG等[19]从反硝化污泥中分离出Pseudomonas stutzeri D6菌株,通过控制C/N比、DO、碳源种类(乙酸、葡萄糖、柠檬酸钠)等条件探究了其DNRA作用。而在本实验中,NH+4-N浓度并未发生明显变化。由此可知,本实验中反硝化过程只涉及常规反硝化过程(式(1))。

    以乙酸钠、乙醇、葡萄糖和蔗糖为碳源的各典型周期运行过程中,NO3-N的比降解速率分别为0.05、0.03、0.03和0.02 g·(g·h)−1。其中,乙酸钠为碳源时,反硝化速率最快,乙醇和葡萄糖次之,蔗糖最慢。这是因为,乙酸能够与辅酶A结合形成乙酰辅酶A,直接进入三羧酸循环被微生物降解,而乙醇在为微生物利用的过程中需要先转化为乙酸才能进而被降解。葡萄糖作为较复杂的有机物,同样需要经过两个氧化过程才能得以降解:第1步,反硝化细菌将其氧化得到丙酮酸和ATP;第2步,丙酮酸进入三羧酸循环时被丙酮酸脱氢酶复合物转化为乙酰辅酶A[20]。因此,有机物结构越复杂,意味着代谢过程越复杂,反硝化速率也就越慢。由此可知,由1个葡萄糖分子和1个果糖分子组成的蔗糖,有机物结构最复杂,导致其反硝化速率最慢。

    图2~图5可以看出,各碳源的典型周期内,反应器中均出现NO2-N积累。以NO3-N为氮源的反硝化过程中,NO2-N来源于常规反硝化。在反应周期内,NO2-N均出现短暂积累情况,浓度均先升高后降低,并逐渐趋于0。葡萄糖为碳源时,最大NO2-N积累率最大,为42.5%,乙酸钠和乙醇次之,分别为23.2%和19.5%,蔗糖最小,仅为7.0%。

    值得注意的是,从图2~图5中还可以发现,在4种碳源条件下,对应的NO2-N浓度均是在NO3-N即将耗尽时达到最大值的。计算各最大积累值时刻点对应的NO3-N浓度之前和之后的实测降解速率,分别以NO3-NNO3-N表示,然后用NO3-N减去NO2-N实测积累速率,即得到NO2-N的真实降解速率(即Nir酶的降解速率),如图6所示。在SBR乙酸钠中,当NO2-N最大积累时,NO3-N的降解速率由0.041 g·(g·h)−1骤降为0.016 g·(g·h)−1,由NO3-N降解速率减去NO2-N积累速率得到的NO2-N降解速率为0.036 g·(g·h)−1;若要使得NO2-N继进行积累,NO3-N的降解速率至少应为0.036 g·(g·h)−1,而此时NO3-N的降解速率显然并不能满足,故而NO2-N浓度开始下降。这表明,NO2-N的降解是滞后于NO3-N的。

    图 6  NO2-N最大积累时刻点的参数动力学分析
    Figure 6.  Analysis of kinetic parameters at maximum accumulation of NO2-N

    从电子传递角度而言,NO2-N作为电子受体所需的电子需要从细胞质膜的周质获得,这使得其获得电子滞后于NO3-N [21]。此外,如果细胞内氧化代谢产生的还原黄素达到饱和,NO3-N和NO2-N在底物电子的获取上将形成竞争,而Nar酶对电子的亲和力强于Nir[22]。同时,有些反硝化细菌种群细胞内只含有Nar酶,而没有Nir酶,也就是其不具备将NO3-N向NO2-N转化的能力,如Comamonadaceae[21]。这些都将使得NO2-N的降解落后于NO3-N,从而导致以NO3-N为氮源的反硝化脱氮过程中出现NO2-N短暂积累的现象。GE等[20]在研究以乙酸、甲醇、葡萄糖等为碳源的反硝化过程中也发现了相同的现象。

    由碳源种类导致的NO2-N最大积累值存在差异的情况同样也出现在很多研究[20, 23]中,乙酸、丙酸、乙醇等为碳源时出现较多NO2-N积累;但丁酸、戊酸、己酸等却仅出现少量甚至并未出现积累。在本实验中,葡萄糖为碳源时,反硝化过程中NO2-N的最大积累值是4种碳源之首,乙醇和乙酸钠次之,蔗糖最少。有研究[24]指出,有机物本身作为电子供体,对Nar酶和Nir酶的亲和力不同使得NO3-N和NO2-N降解速率的差值不同,将导致NO2-N积累值不同。而碳源种类作为营养物质,若长期对反硝化细菌进行培养,将改变菌群结构,使得微生物群落中所含的Nar酶和Nir酶的数量发生改变,从而导致NO2-N积累值发生显著变化。LU等[25]发现,在以乙酸和乙醇为碳源的反硝化细菌中,Thauera属占主导,而ThaueraNar酶的数量要比Nir酶多;而GLASS等[26]发现,以葡萄糖为碳源的反硝化细菌中Comamonadaceae属则占主导,而Comamonadaceae属中的一些菌株,如Acidovorax facilis株,并不具备Nir酶系统,这将导致以葡萄糖为碳源时,NO2-N积累现象更显著。但是,在阎宁等[27]的实验中,葡萄糖为碳源时并未出现或只出现少量NO2-N积累的现象。这表示,NO2-N积累除了与微生物结构和碳源种类有关,还与其他环境控制条件有关,如温度、pH、碳源适应时间等。

    1)农村污水处理过程中普遍存在碳源不足的问题,通过外加碳源的投加是保证污水处理过程中稳定的TN去除率的有效措施。

    2)采用乙酸钠,乙醇,葡萄糖,蔗糖时作为外加碳源时,反硝化脱氮实现稳定的时间分别为17、24、26、30 d,其平均反硝化速率分别为0.050、0.031、0.034和0.026 g·(g·h)−1,即硝酸盐还原速率依次降低。

    3)在反硝化过程中,外加碳源均出现了显著的亚硝酸盐积累,在硝酸盐耗尽时,出现亚硝酸盐的最大值。

    4)以葡萄糖为碳源时,最大亚硝酸盐积累率为42.5%;而以乙酸钠和乙醇为碳源时,最大亚硝酸盐积累率次之,分别为23.2%和19.5%;以蔗糖为碳源时,最大亚硝酸盐积累率最小,仅为7.0%。

  • 图 1  采样点与移动车监测范围示意图

    Figure 1.  A sketch map of sampling point and mobile vehicle monitoring scope

    图 2  各采样点的指纹谱图

    Figure 2.  Fingerprint spectra of sampling points

    图 3  各排气筒下风向100~300 m处部分指标物质浓度

    Figure 3.  Concentration of some index compounds at 100~300 m downwind of exhaust funnels

    表 1  废气类型、废气处理工艺及指标

    Table 1.  Type, treatment process and indicators of exhaust gas

    编号废气类型废气来源废气处理工艺高度/m流量/(m3·h−1)
    1#工艺废气聚氨酯生产装置活性炭吸附25~305 500
    2#燃烧废气聚氨酯装置有机废气热氧化炉CTO+SCR+SNCR35~4030 000
    3#燃烧废气聚氨酯装置高热值废液热力焚烧炉TO+SNCR+急冷碱洗+静电除尘45~5025 000
    4#工艺废气聚碳酸酯生产装置洗涤塔35~408 500
    5#工艺废气聚碳酸酯掺混料装置袋式除尘+活性炭吸附25~3045 000
    6#燃烧废气聚碳酸酯装置有机废气热力焚烧炉TO+SCR+烟气急冷+碱洗35~406 000
      注:CTO为催化热氧化炉;SCR为选择性催化还原技术;SNCR为选择性非催化还原技术;TO为热力焚烧炉。
    编号废气类型废气来源废气处理工艺高度/m流量/(m3·h−1)
    1#工艺废气聚氨酯生产装置活性炭吸附25~305 500
    2#燃烧废气聚氨酯装置有机废气热氧化炉CTO+SCR+SNCR35~4030 000
    3#燃烧废气聚氨酯装置高热值废液热力焚烧炉TO+SNCR+急冷碱洗+静电除尘45~5025 000
    4#工艺废气聚碳酸酯生产装置洗涤塔35~408 500
    5#工艺废气聚碳酸酯掺混料装置袋式除尘+活性炭吸附25~3045 000
    6#燃烧废气聚碳酸酯装置有机废气热力焚烧炉TO+SCR+烟气急冷+碱洗35~406 000
      注:CTO为催化热氧化炉;SCR为选择性催化还原技术;SNCR为选择性非催化还原技术;TO为热力焚烧炉。
    下载: 导出CSV

    表 2  指纹谱指标物质

    Table 2.  Index compounds of fingerprint spectra

    编号组分物质名称参照标准气味嗅阈值/(mg·m−3)
    1芳烃苯乙烯A芳香气味0.170
    2芳烃B芳香气味9.415
    3芳烃甲苯B芳香气味0.400
    4芳烃乙苯A芳香气味0.085
    5芳烃对-二甲苯B芳香气味0.570
    6芳烃间-二甲苯B芳香气味0.430
    7芳烃邻-二甲苯B芳香气味1.300
    8含氧烃乙酸乙酯A凤梨味3.300
    9含氧烃乙酸丁酯A愉快果香气味0.083
    10含氧烃甲基丙烯酸甲酯A刺激性气味0.940
    11含氧烃甲基异丁基酮A令人愉快的香味0.760
    12含氧烃甲基乙基酮A刺激性气味1.416
    13含氧烃乙酸乙烯酯B醚样的微甜气味0.461
    14含氧烃异丙醇B刺激性气味69.759
    15卤代烃氯甲烷B醚样的微甜气味21.000
    16卤代烃1,2-二氯乙烷B醚样的微甜气味53.020
    17卤代烃三氯乙烯B似氯仿气味23.000
    18卤代烃氯苯B芳香气味1.005
    19烯烃1,3-丁二烯B芳香气味0.560
    20硫化物二硫化碳A烂萝卜味0.580
      注:A标准为《恶臭(异味)污染物排放标准》(DB31/ 1025-2016);B标准为《大气污染物综合排放标准》(DB31/ 933-2015)。
    编号组分物质名称参照标准气味嗅阈值/(mg·m−3)
    1芳烃苯乙烯A芳香气味0.170
    2芳烃B芳香气味9.415
    3芳烃甲苯B芳香气味0.400
    4芳烃乙苯A芳香气味0.085
    5芳烃对-二甲苯B芳香气味0.570
    6芳烃间-二甲苯B芳香气味0.430
    7芳烃邻-二甲苯B芳香气味1.300
    8含氧烃乙酸乙酯A凤梨味3.300
    9含氧烃乙酸丁酯A愉快果香气味0.083
    10含氧烃甲基丙烯酸甲酯A刺激性气味0.940
    11含氧烃甲基异丁基酮A令人愉快的香味0.760
    12含氧烃甲基乙基酮A刺激性气味1.416
    13含氧烃乙酸乙烯酯B醚样的微甜气味0.461
    14含氧烃异丙醇B刺激性气味69.759
    15卤代烃氯甲烷B醚样的微甜气味21.000
    16卤代烃1,2-二氯乙烷B醚样的微甜气味53.020
    17卤代烃三氯乙烯B似氯仿气味23.000
    18卤代烃氯苯B芳香气味1.005
    19烯烃1,3-丁二烯B芳香气味0.560
    20硫化物二硫化碳A烂萝卜味0.580
      注:A标准为《恶臭(异味)污染物排放标准》(DB31/ 1025-2016);B标准为《大气污染物综合排放标准》(DB31/ 933-2015)。
    下载: 导出CSV

    表 3  各采样点检出恶臭物质的质量分数

    Table 3.  Mass fraction of odorous compounds detected from sampling points

    物种物质名称质量分数/%物种物质名称质量分数/%
    1#2#3#4#5#6#1#2#3#4#5#6#
    芳香烃0.081.211.99nd0.40nd卤代烃三氯三氟乙烷nd0.45ndndndnd
    甲苯81.183.413.171.163.461.54氯仿0.021.971.17ndnd1.16
    乙苯0.021.291.293.1914.961.54四氯化碳nd0.910.70ndndnd
    对-二甲苯0.011.522.581.740.411.931,2-二氯丙烷nd0.910.70ndndnd
    间-二甲苯0.041.06nd1.450.381.16溴二氯甲烷ndnd0.82ndndnd
    邻-二甲苯0.021.060.940.870.431.16四氯乙烯nd1.59ndndndnd
    苯乙烯nd0.30nd21.1671.02nd溴仿ndnd7.74ndndnd
    nd0.300.941.450.023.47六氯-1,3-丁二烯0.07ndnd2.030.033.09
    异丙苯ndndndnd0.73nd烷烃丙烷nd4.407.15nd0.09nd
    1,2,4-三甲苯0.03ndndndndnd异丁烷0.101.673.52nd0.13nd
    含氧烃丙酮0.1010.089.142.320.085.02正丁烷nd1.903.52nd0.41nd
    异丙醇ndndndnd0.091.16异戊烷0.051.291.52ndndnd
    甲基叔丁基醚nd0.380.35ndndnd正戊烷0.021.061.29nd0.02nd
    2-丁酮nd2.052.231.160.55nd2-甲基戊烷0.061.060.941.740.042.32
    乙酸乙酯nd9.868.09nd0.07nd3-甲基戊烷0.040.450.351.160.021.54
    乙酸丁酯0.1633.3623.45ndndnd甲基环戊烷0.020.23ndnd0.01nd
    甲基丙烯酸甲酯ndndndnd1.72nd正己烷0.281.591.0610.720.1413.51
    甲基异丁基酮ndnd0.35nd0.01nd环己烷nd0.23ndnd1.62nd
    2-己酮ndndndnd0.07nd2-甲基己烷nd0.380.35nd0.03nd
    硫化物二硫化碳0.021.821.060.580.011.163-甲基己烷nd0.380.70ndndnd
    卤代烃氯甲烷0.941.902.230.580.06nd正庚烷nd0.530.70nd0.031.54
    氯乙烯nd0.150.23ndndnd甲基环己烷ndndndnd0.02nd
    二氯甲烷8.554.405.042.030.021.16正十一烷0.06ndndndndnd
    1,2-二氯乙烷nd2.201.41nd0.02nd正十二烷0.94ndnd41.450.5754.83
    三氯乙烯nd0.30ndndndnd烯烃1,3-丁二烯0.01ndndnd0.38nd
    1,2-二氯苯ndnd0.70ndndnd乙烯nd0.30ndnd0.08nd
    1,2,4-三氯苯ndndnd1.740.032.32丙烯nd0.300.59ndnd0.39
    氯乙烷0.01ndndnd0.03nd1-丁烯7.150.380.593.481.74nd
    三氯氟甲烷nd1.361.41nd0.02nd1-己烯ndndndnd0.03nd
      注:nd为该物质未检出。
    物种物质名称质量分数/%物种物质名称质量分数/%
    1#2#3#4#5#6#1#2#3#4#5#6#
    芳香烃0.081.211.99nd0.40nd卤代烃三氯三氟乙烷nd0.45ndndndnd
    甲苯81.183.413.171.163.461.54氯仿0.021.971.17ndnd1.16
    乙苯0.021.291.293.1914.961.54四氯化碳nd0.910.70ndndnd
    对-二甲苯0.011.522.581.740.411.931,2-二氯丙烷nd0.910.70ndndnd
    间-二甲苯0.041.06nd1.450.381.16溴二氯甲烷ndnd0.82ndndnd
    邻-二甲苯0.021.060.940.870.431.16四氯乙烯nd1.59ndndndnd
    苯乙烯nd0.30nd21.1671.02nd溴仿ndnd7.74ndndnd
    nd0.300.941.450.023.47六氯-1,3-丁二烯0.07ndnd2.030.033.09
    异丙苯ndndndnd0.73nd烷烃丙烷nd4.407.15nd0.09nd
    1,2,4-三甲苯0.03ndndndndnd异丁烷0.101.673.52nd0.13nd
    含氧烃丙酮0.1010.089.142.320.085.02正丁烷nd1.903.52nd0.41nd
    异丙醇ndndndnd0.091.16异戊烷0.051.291.52ndndnd
    甲基叔丁基醚nd0.380.35ndndnd正戊烷0.021.061.29nd0.02nd
    2-丁酮nd2.052.231.160.55nd2-甲基戊烷0.061.060.941.740.042.32
    乙酸乙酯nd9.868.09nd0.07nd3-甲基戊烷0.040.450.351.160.021.54
    乙酸丁酯0.1633.3623.45ndndnd甲基环戊烷0.020.23ndnd0.01nd
    甲基丙烯酸甲酯ndndndnd1.72nd正己烷0.281.591.0610.720.1413.51
    甲基异丁基酮ndnd0.35nd0.01nd环己烷nd0.23ndnd1.62nd
    2-己酮ndndndnd0.07nd2-甲基己烷nd0.380.35nd0.03nd
    硫化物二硫化碳0.021.821.060.580.011.163-甲基己烷nd0.380.70ndndnd
    卤代烃氯甲烷0.941.902.230.580.06nd正庚烷nd0.530.70nd0.031.54
    氯乙烯nd0.150.23ndndnd甲基环己烷ndndndnd0.02nd
    二氯甲烷8.554.405.042.030.021.16正十一烷0.06ndndndndnd
    1,2-二氯乙烷nd2.201.41nd0.02nd正十二烷0.94ndnd41.450.5754.83
    三氯乙烯nd0.30ndndndnd烯烃1,3-丁二烯0.01ndndnd0.38nd
    1,2-二氯苯ndnd0.70ndndnd乙烯nd0.30ndnd0.08nd
    1,2,4-三氯苯ndndnd1.740.032.32丙烯nd0.300.59ndnd0.39
    氯乙烷0.01ndndnd0.03nd1-丁烯7.150.380.593.481.74nd
    三氯氟甲烷nd1.361.41nd0.02nd1-己烯ndndndnd0.03nd
      注:nd为该物质未检出。
    下载: 导出CSV

    表 4  各有组织排放源的恶臭特征污染物

    Table 4.  Odor characteristic pollutants of organized discharge sources

    有组织排放源质量分数前3位的物质阈稀释倍数大于1的物质
    物质名称质量分数/%物质名称阈稀释倍数
    1#排气筒甲苯81.18乙酸丁酯229.19
    1#排气筒二氯甲烷8.55甲苯28.00
    1#排气筒1-丁烯7.151-丁烯1.09
    2#排气筒乙酸丁酯33.36乙酸丁酯530.76
    2#排气筒丙酮10.08
    2#排气筒乙酸乙酯9.86
    3#排气筒乙酸丁酯23.45乙酸丁酯241.25
    3#排气筒丙酮9.14
    3#排气筒乙酸乙酯8.09
    4#排气筒正十二烷41.45苯乙烯1.00
    4#排气筒苯乙烯21.16
    4#排气筒正己烷10.72
    5#排气筒苯乙烯71.02苯乙烯114.91
    5#排气筒乙苯14.96乙苯46.35
    5#排气筒甲苯3.46甲苯2.28
    6#排气筒正十二烷54.83
    6#排气筒正己烷13.51
    6#排气筒丙酮5.02
    有组织排放源质量分数前3位的物质阈稀释倍数大于1的物质
    物质名称质量分数/%物质名称阈稀释倍数
    1#排气筒甲苯81.18乙酸丁酯229.19
    1#排气筒二氯甲烷8.55甲苯28.00
    1#排气筒1-丁烯7.151-丁烯1.09
    2#排气筒乙酸丁酯33.36乙酸丁酯530.76
    2#排气筒丙酮10.08
    2#排气筒乙酸乙酯9.86
    3#排气筒乙酸丁酯23.45乙酸丁酯241.25
    3#排气筒丙酮9.14
    3#排气筒乙酸乙酯8.09
    4#排气筒正十二烷41.45苯乙烯1.00
    4#排气筒苯乙烯21.16
    4#排气筒正己烷10.72
    5#排气筒苯乙烯71.02苯乙烯114.91
    5#排气筒乙苯14.96乙苯46.35
    5#排气筒甲苯3.46甲苯2.28
    6#排气筒正十二烷54.83
    6#排气筒正己烷13.51
    6#排气筒丙酮5.02
    下载: 导出CSV
  • [1] SIRONI S, CAPELLI L, CENTOLA P, et al. Odour emission factors for assessment and prediction of Italian MSW landfills odour impact[J]. Atmospheric Environment, 2005, 39(29): 5387-5393. doi: 10.1016/j.atmosenv.2005.05.023
    [2] 韩博, 吴建会, 王凤炜, 等. 典型工业恶臭源恶臭排放特征研究[J]. 中国环境科学, 2013, 33(3): 416-418. doi: 10.3969/j.issn.1000-6923.2013.03.005
    [3] 韩博, 吴建会, 王凤炜, 等. 天津滨海新区工业源VOCs及恶臭物质排放特征[J]. 中国环境科学, 2011, 31(11): 1776-1778.
    [4] 张嘉妮, 曾春玲, 刘锐源, 等. 家具企业挥发性有机物排放特征及其环境影响[J]. 环境科学, 2019, 40(12): 5240-5249.
    [5] KANSAL A. Sources and reactivity of NMHCs and VOCs in the atmosphere: A Review[J]. Journal of Hazardous Materials, 2009, 166(1): 17-20. doi: 10.1016/j.jhazmat.2008.11.048
    [6] 翟增秀, 邹克华, 李伟芳, 等. 石油炼化行业恶臭气体成分谱研究[J]. 环境科学研究, 2012, 25(3): 253-258.
    [7] 朱红. 炼油厂恶臭污染物的防治[J]. 石油化工环境保护, 2004, 27(1): 33-35.
    [8] 瞿梅. 国内炼油厂恶臭污染源及治理技术[J]. 石油化工安全环保技术, 2008, 24(4): 47-50. doi: 10.3969/j.issn.1673-8659.2008.04.017
    [9] 黄娴, 王小妹, 潘峰, 等. 石化园区恶臭污染源识别与分析[J]. 安全与环境工程, 2012, 19(2): 17-22. doi: 10.3969/j.issn.1671-1556.2012.02.005
    [10] 刘兴然, 唐飞. 水性聚氨酯的市场前景及生产工艺[J]. 化工设计, 2017, 27(6): 19-20. doi: 10.3969/j.issn.1007-6247.2017.06.006
    [11] 李小利, 李贵贤. 聚碳酸酯的合成工艺对比及进展分析[J]. 天津化工, 2009, 23(5): 12-14. doi: 10.3969/j.issn.1008-1267.2009.05.004
    [12] 王彦荣, 景政红. 聚碳酸酯的生产工艺及市场[J]. 合成树脂新产品开发与应用专栏, 2010, 27(5): 58-59.
    [13] U. S. Environmental Protection Agency. Compendium of methods for the determination of toxic organic compounds in ambient air: 2nd Edition, method TO-15[S]. Washington D C: U. S. Environmental Protection Agency, 1999.
    [14] NICOLAS J, CRAFFE F, ROMAIN A C. Estimation of odor emission rate from landfill areas using the sniffing team method[J]. Waste Management, 2006, 26(11): 1259-1269. doi: 10.1016/j.wasman.2005.10.013
    [15] 赵岩, 陆文静, 王洪涛, 等. 城市固体废物处理处置设施恶臭污染评估指标体系研究[J]. 中国环境科学, 2014, 34(7): 1805-1807.
    [16] 芦会杰. 典型生活垃圾处理设施恶臭排放特征及污染评价[J]. 环境科学, 2017, 38(8): 3180-3182.
    [17] 李伟芳. 国内恶臭污染物优先控制的筛选研究[J]. 上海环境科学, 2012, 31(1): 1-2.
    [18] 上海市环境保护局, 上海市质量技术监督局. 恶臭(异味)污染物排放标准: DB31/ 1025-2016[S]. 上海, 2016.
    [19] 上海市环境保护局, 上海市质量技术监督局. 大气污染物综合排放标准: DB31/ 933-2015[S]. 上海, 2015.
    [20] 王亘, 翟增秀, 韩萌, 等. 恶臭污染排放源指纹谱编制及初步应用[J]. 环境科学研究, 2017, 30(12): 1944-1953.
    [21] U. S. Environmental Protection Agency. SPECIATE 5.0[DB/OL]. [2020-05-02]. http://www.epa.gov/air-emissions-modeling/speciate, 2019.
    [22] 王建成, 潘成杰. 移动监测车在化工园区大气监测管控中的应用[J]. 广东化工, 2019, 46(13): 117-118. doi: 10.3969/j.issn.1007-1865.2019.13.057
  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 6.7 %DOWNLOAD: 6.7 %HTML全文: 86.5 %HTML全文: 86.5 %摘要: 6.9 %摘要: 6.9 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 97.6 %其他: 97.6 %XX: 1.3 %XX: 1.3 %保定: 0.0 %保定: 0.0 %内网IP: 0.0 %内网IP: 0.0 %北京: 0.4 %北京: 0.4 %南宁: 0.0 %南宁: 0.0 %南昌: 0.0 %南昌: 0.0 %大连: 0.0 %大连: 0.0 %天津: 0.0 %天津: 0.0 %太原: 0.0 %太原: 0.0 %平凉: 0.0 %平凉: 0.0 %广州: 0.1 %广州: 0.1 %日照: 0.0 %日照: 0.0 %武汉: 0.0 %武汉: 0.0 %衡阳: 0.0 %衡阳: 0.0 %重庆: 0.0 %重庆: 0.0 %阳泉: 0.0 %阳泉: 0.0 %其他XX保定内网IP北京南宁南昌大连天津太原平凉广州日照武汉衡阳重庆阳泉Highcharts.com
图( 3) 表( 4)
计量
  • 文章访问数:  4768
  • HTML全文浏览数:  4768
  • PDF下载数:  65
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-05-05
  • 录用日期:  2020-07-09
  • 刊出日期:  2021-02-10
陈凌霄, 修光利, 黄银芝. 聚氨酯和聚碳酸酯制造过程的恶臭排放特征和指纹谱[J]. 环境工程学报, 2021, 15(2): 755-764. doi: 10.12030/j.cjee.202005008
引用本文: 陈凌霄, 修光利, 黄银芝. 聚氨酯和聚碳酸酯制造过程的恶臭排放特征和指纹谱[J]. 环境工程学报, 2021, 15(2): 755-764. doi: 10.12030/j.cjee.202005008
CHEN Lingxiao, XIU Guangli, HUANG Yinzhi. Characteristics and fingerprint spectra of odor pollutants emitted from typical production process of polyurethane and polycarbonate[J]. Chinese Journal of Environmental Engineering, 2021, 15(2): 755-764. doi: 10.12030/j.cjee.202005008
Citation: CHEN Lingxiao, XIU Guangli, HUANG Yinzhi. Characteristics and fingerprint spectra of odor pollutants emitted from typical production process of polyurethane and polycarbonate[J]. Chinese Journal of Environmental Engineering, 2021, 15(2): 755-764. doi: 10.12030/j.cjee.202005008

聚氨酯和聚碳酸酯制造过程的恶臭排放特征和指纹谱

    通讯作者: 修光利(1972—),男,博士,教授。研究方向:大气环境科学与工程。E-mail:xiugl@ecust.edu.cn
    作者简介: 陈凌霄(1997—),女,硕士研究生。研究方向:恶臭污染分布与排放特征。E-mail:chenlx1997@126.com
  • 1. 上海市环境保护化学污染物环境标准和风险管理重点实验室,上海 200237
  • 2. 华东理工大学,国家环境保护化工过程环境风险评价与控制重点实验室,上海 200237
  • 3. 上海污染控制与生态安全研究院,上海 200237
基金项目:
上海市生态环境局“长三角生态环境地方立法比较研究和标准一体化研究”资助项目

摘要: 聚氨酯和聚碳酸酯制造属于典型的石油化工行业。制造过程中的恶臭排放是石化行业的重要的污染问题。采用气相色谱质谱联用(GC-MS)方法对聚氨酯和聚碳酸酯制造过程中的臭气排放特征和指纹谱进行研究。在所采集的样品中共定量分析了96种物质,其中芳香烃、烷烃和有氧烃的含量最高。结合物质含量与阈稀释倍数分析,将乙酸丁酯、甲苯、1-丁烯、苯乙烯、乙苯识别为主要的特征污染物,发现各样品的理论臭气浓度远低于我国国家标准和各地方标准中管控的臭气浓度限值。从定量分析的96种物质中筛选出20种作为指纹谱指标物质,根据其归一化浓度绘制各采样点的指纹谱,同时利用移动监测车在各排气筒下风向100~300 m处的连续监测结果对指纹谱进行初步验证。本研究得出指纹谱的科学性与准确性,可为石化行业的恶臭污染管理提供参考。

English Abstract

  • 恶臭物质不仅对人体感官有强烈刺激作用[1],多数还具有毒性或“三致”效应[2-3]。除少数无机污染物(氨和硫化氢等)以外,大部分恶臭污染物同时也属于挥发性有机物(volatile organic compounds,VOCs)[4],是臭氧(O3)和二次气溶胶粒子的重要前体物[5],进而引发灰霾污染。因此,恶臭污染的控制对维护公共健康和改善空气环境都有重要意义,恶臭污染亟需被治理。石油化工是产生VOCs及恶臭污染的重点行业之一[6],石化产品生产过程中易产生大量的苯系物、烷烯烃、酯类和醛类等物质,这些物质的不同气味之间发生相抵、相加、促进等多重作用,造成复合恶臭污染。近年来,不少学者开展了对石化行业恶臭污染的研究,如朱红[7]主要研究了炼油厂中硫化氢的预防和控制,瞿梅[8]研究了炼油厂的恶臭污染来源并提出了有效治理措施,黄娴等[9]对石化园区内的恶臭污染来源进行识别并基于工况和生产链分析恶臭产生原因。研究多集中于炼油过程中产生的传统恶臭气体的识别与治理,如硫化氢、氨等,对一些新兴污染源和复合恶臭污染管控的研究目前还是空白。

    基于不同化工装置研究排放特征、建立指纹谱是当前复合恶臭污染管控的重要技术方法。本研究选择聚氨酯和聚碳酸酯生产装置为研究对象,结合恶臭物质的浓度、嗅阈值和阈稀释倍数分析其生产过程中产生的特征污染物和理论臭气浓度,筛选重要指标物质建立指纹谱,以期为石化行业复合恶臭污染的判别与控制提供参考。

  • 聚氨酯合成主要原料为有机多元异氰酸酯和端羟基化合物。端羟基化合物与过量的二异氰酸酯聚合反应生成含有异氰酸基端基的低聚体;然后与含有活泼氢的化合物发生扩链反应生成取代脲基;体系中过量的—NCO端基和—N=C=O端基分别与氨基甲酸酯基和取代脲基反应而交联,分子结构由线型变为体型从而得到聚氨酯产品。由于合成过程中会使用大量有机溶剂作为辅料[10],所以极易产生VOCs,造成恶臭污染。

    聚碳酸酯常用的生产方法有酯交换法、非光气法和界面缩聚光气法[11-12]。酯交换法和非光气法是使碳酸二苯酯和双酚A在含有微量金属盐催化剂的溶液内进行酯交换从而得到低聚物,再缩聚得到聚碳酸酯。不同的是,酯交换法使苯酚通过光气法生成碳酸二苯酯,而非光气法是利用甲醇液相氧化羰化合成的碳酸二甲酯与苯酚酯交换得到碳酸二苯酯。界面缩聚光气法是在光气反应器中使双酚A-氢氧化钠的水相溶液与二氯甲烷油相界面上反应生成低聚物,再缩聚为聚碳酸酯。由于生产过程中涉及双酚A、苯酚和二氯甲烷等原料,故极易因原料挥发或反应产生有毒、且引起恶臭污染的副产品。

  • 对某典型聚氨酯和聚碳酸酯生产装置的有组织源排气筒进行采样分析,废气类型、废气处理工艺及指标见表1。在有组织源排气筒的废气处理设施出口设置采样点位,每个点位进行1次采样,每次采集3个平行样品。为研究移动监测车在环境监控中的作用,利用移动监测车在排气筒下风向100~300 m的范围内连续监测10 min。采样点位和移动车监测范围如图1所示。采用美国Entech公司内表面硅烷化处理的苏玛罐(SUMMA canister)采集样品,容量为3 L。采样前使用清洗系统对苏玛罐进行有效清洗,抽真空至250 Pa以下备用。在采样点将苏玛罐打开进行瞬时采样,采样时间为10~30 s。采样结束后关好罐阀,记录现场相关数据,带回实验室进行分析。

  • 挥发性有机物定性定量分析参照美国国家环保局TO-15方法[13]。样品气体经过三级冷阱预浓缩系统浓缩,除掉大部分水和CO2。第一级冷阱捕集温度为−150 ℃,预热温度20 ℃,解析温度20 ℃,烘烤温度130 ℃,烘烤时间5 min;二级冷阱捕集温度为−30 ℃,解析温度180 ℃,解析时间3 min,烘烤温度190 ℃;三级冷阱捕集温度−160 ℃,进样时间8 min,烘烤时间3 min。预浓缩后样品被转移至气相色谱/质谱联用仪(岛津GC-MS QP2020)进行定量分析,使用的分析标准物质为美国Linder公司生产的96种挥发性有机物标样,包括17种芳香烃、12种含氧烃、1种含硫化合物、32种卤代烃、27种烷烃和7种烯烃。

    移动监测车采用飞行时间质谱仪(禾信SPI-MS 2000)对环境空气中的挥发性有机物进行分析测定,质谱仪使用UV离子源,UV电压为1 100~1 300 V,质量分辨率≥500 FWHM,质量精度为0.5 u,扫描质量范围为1~959 u,灵敏度1.74 μg·m−3(苯)。

  • 由于恶臭污染具有以人的嗅觉感知为判断标准的特殊性[14],所以产生恶臭的主要物质不一定是物质浓度最高的那些恶臭污染物,主要决定于其嗅阈值的高低[15]。因此,本研究采用物质浓度与嗅阈值的比值,即阈稀释倍数,作为单一恶臭物质的污染评估指标,具体计算方法参考式(1)。

    式中:D为恶臭物质的阈稀释倍数;C为恶臭物质的浓度,mg·m−3COT为恶臭物质的嗅阈值,mg·m−3

    混合恶臭气体中恶臭物质的阈稀释倍数越高,其对臭气的贡献值就越大,因此,对阈稀释倍数做总和模型法就可得到混合气体的理论臭气浓度值[16],并将其作为恶臭污染的综合评估指标,计算步骤参考式(2)。

    式中:COC(Theory)为混合恶臭气体的理论臭气浓度;Di为混合恶臭气体中第i种恶臭物质的阈稀释倍数;n为混合恶臭气体中的物质数量。

  • 1)指标物质筛选。石化行业生产过程中排放的恶臭物质较为复杂,选择其中部分重要物质作为指纹谱指标物质。筛选国家、地方及行业标准中限制排放的,并有成熟的分析测定方法可进行实验室分析,且存在广泛、嗅阈值低[17]的恶臭物质作为指标物质。由于上海市出台的《恶臭(异味)污染物排放标准》(DB31/ 1025-2016)[18]和《大气污染物综合排放标准》(DB31/ 933-2015)[19]中涵盖了国家标准和其他地方标准中规定的管控项目,因此,选择以这2个标准作为参照,结合嗅阈值、检出率等筛选出20种有机类物质作为指纹谱的指标物质(表2)。

    2)恶臭指纹谱的构建。为减少生产过程中排放污染物浓度存在差异的影响,指纹谱以指标恶臭物质为横坐标,以指标恶臭物质的相对含量为纵坐标构建而成。由于总VOCs计算方法中规定未识别物质以甲苯计[20],所以选择甲苯作为参比物,对各物质的质量浓度进行归一化处理。指纹谱可从宏观上反映出污染源排放恶臭物质的内在特征,从理论上说某一企业的谱图具有唯一性,从而为谱图识别污染提供科学依据。

  • 根据仪器分析结果,得到有组织排放源的恶臭物质浓度水平,共检测出58种有机类恶臭物质,包括芳香烃10种、含氧烃9种、硫化物1种、卤代烃17种、烷烃16种和烯烃5种。这些恶臭物质以芳香烃、烷烃和含氧烃的排放为主,与美国环境保护署SPECIATE数据库中提供的石化企业恶臭VOCs数据结果[21]一致。各有组织源排气筒释放的恶臭VOCs总浓度为(0.085 3±0.023 1)~(26.329 0±1.783 3) mg·m−3。其中聚氨酯生产装置(1#)和聚碳酸酯掺混料装置(5#)排放的恶臭VOCs浓度远高于其他装置,分别达到(13.793 0±0.876 2) mg·m−3和(26.329 0±1.783 3) mg·m−3。这是由于这2个装置采用活性炭吸附装置进行末端处理,处理效率较低导致。

    除浓度差别外,各有组织排放源的检出物质也有所不同。如表3所示,与聚氨酯生产相关的1#~3#排气筒废气中分别检出26种、41种和37种物质,以甲苯、乙酸丁酯和丙酮为主;与聚碳酸酯生产相关的4#~6#排气筒废气中分别检出19种、41种和19种物质,相对1#~3#排气筒而言检出物种较少,主要以苯乙烯、正十二烷和乙苯为主。

  • 由各采样点检出物质的质量浓度与嗅阈值的比值计算得到阈稀释倍数。阈稀释倍数越高的物质对臭气浓度的贡献越大,阈稀释倍数小于1的物质基本不造成恶臭污染。识别特征污染物需结合质量分数与阈稀释倍数。筛选出各有组织排放源质量分数前3位和阈稀释倍数大于1的物质(表4),结果表明,聚氨酯生产装置(1#)的特征污染物识别为乙酸丁酯、甲苯和1-丁烯;聚氨酯装置有机废气热氧化炉(2#)和高热值废液热力焚烧炉(3#)的特征污染物均识别为乙酸丁酯;聚碳酸酯生产装置(4#)的特征污染物为苯乙烯;聚碳酸酯掺混料装置(5#)的特征污染物为苯乙烯、乙苯和甲苯;聚碳酸酯装置有机废气热力焚烧炉(6#)废气中无阈稀释倍数大于1的恶臭物质,而阈稀释倍数小于1的物质不易产生恶臭污染,故该装置无特征污染物。

    利用各排放源检出物质的阈稀释倍数做总和模型法得到理论臭气浓度。计算结果既考虑了阈稀释倍数较大的物质对恶臭污染的贡献,又与物质浓度呈线性相关,科学性与准确性都较高,可为恶臭污染评估提供参考。将每个排放源所有检出恶臭的阈稀释倍数做总和得到理论臭气浓度值(式(2))为0.32~530.83,远低于国家和各地方恶臭污染物排放标准中管控的臭气浓度限值;与聚碳酸酯生产相关的4#和6#排气筒废气的理论臭气浓度较低,仅为1.42和0.32;5#排气筒废气的理论臭气浓度计算为166.62,其中苯系物的贡献率为98.79%;与聚氨酯生产相关的1#~3#排气筒的理论臭气浓度相对较高,分别达到258.57、530.83和241.3;其中乙酸丁酯的贡献率达到88.64%、99.99%和99.98%,说明乙酸丁酯是造成恶臭污染的主要原因。根据理论臭气浓度分析结果可知,有组织排放源的恶臭污染影响较小,这与末端处理设施热力焚烧炉和热氧化装置的净化效率较高有关。实地调研结果与理论计算结果基本相符,各末端处理装置正常开启,厂区道路上并无明显异味。

  • 1)指纹谱分析。根据20种指标物质绘制各采样点位的指纹谱图(见图2)。聚氨酯生产装置(1#)废气中共检出了10种指标物质,归一化浓度为0.000 09~1;除甲苯外,乙酸丁酯、氯甲烷等其他物质的归一化浓度均远小于1。聚氨酯装置有机废气热氧化炉(2#)和高热值废液热力焚烧炉(3#)废气中分别检出了14种和12种指标物质。乙酸丁酯的归一化浓度最高,分别为9.78和7.41,其次为乙酸乙酯。2#和3#的指纹谱趋势十分相似,这个结果可能是由于废气、废液来源相同,且末端处理工艺均采用高温氧化方法导致的。聚碳酸酯生产装置(4#)和掺混料装置(5#)废气中分别检出了9种和16种指标物质,主要以苯系物为主,其中苯乙烯的归一化浓度最高,分别为18.25和20.50,其次为乙苯。4#和5#的指纹谱趋势较为相近,与其废气来源相似有很大关系。聚碳酸酯装置有机废气热力焚烧炉(6#)废气中共检出了7种指标物质,其中5种属于苯系物,归一化浓度为0.75~1.25。综上所述,废气来源、末端处理工艺的不同都可能导致指纹谱有所差异,通过对指纹谱差异的判断可更好地识别不同工业排放源的特征,从而促进石化行业的恶臭污染控制。

    2)基于移动监测车对指纹谱的初步验证。一般的监测分析方法无法兼顾到不同区域不同时间的污染情况,而移动监测车可进行走航式监测,较为灵活,可以根据监测的需求与目标及时调整监测路线,连续监测出不同区域不同时间环境空气中的物质组成与浓度[22]。为分析企业各装置排放恶臭气体对周边的影响,在各排气筒下风向进行在线监测。由于各排气筒的高度较高(≥25 m),恶臭污染物迁移到地面的时间更长、距离更远,风向一旦变化就会影响监测结果,故选择使用移动监测车在各排气筒下风向100~300 m处进行监测。这样可以随时观察风向变化,改变监测路线,降低监测误差。分析移动监测车的监测结果(见图3)发现,各排气筒下风向100~300 m处测得的甲苯、乙苯和二甲苯浓度均较高。这是由于各有组织排放源废气在湍流影响下会发生混合作用,使得扩散后物质的相对含量发生了变化。除甲苯、乙苯和二甲苯以外,其他物质的相对含量分布与指纹谱的趋势较为一致。这是由于这些物质浓度不高,经湍流稀释后并未发生明显的混合作用。通过指纹谱中归一化浓度较高的其他物质,如苯乙烯、乙酸丁酯、乙酸乙酯等,初步将走航监测结果与指纹谱进行匹配。综上所述,移动走航车的监测结果初步验证了本研究绘制的聚氨酯和聚碳酸酯装置的指纹谱具有一定的科学性与准确性,证明了移动监测车可以与传统的监测方法相结合,在大气监测及环境管理中发挥重要作用。

  • 1)聚氨酯和聚碳酸酯制造过程中排放的恶臭VOCs包括芳香烃、含氧烃、卤代烃、烷烃、烯烃和硫化物6大类,主要以芳香烃、烷烃和有氧烃为主。各有组织源释放的恶臭VOCs总浓度各有不同,其中聚氨酯生产装置(1#)和聚碳酸酯掺混料装置(5#)排放的恶臭VOCs浓度远高于其他装置。

    2)结合质量分数与阈稀释倍数分析,将乙酸丁酯、甲苯、1-丁烯、苯乙烯和乙苯识别为主要恶臭特征污染物。经计算,各排放源的理论臭气浓度值远低于国家和各地方恶臭污染物排放标准中管控的臭气浓度限值。其中与聚碳酸酯生产相关的4#和6#排气筒废气的理论臭气浓度仅为1.42和0.32,基本不造成恶臭污染。

    3)聚氨酯生产装置(1#)指纹谱中甲苯的归一化浓度最高,与聚氨酯生产相关的2#和3#指纹谱中乙酸丁酯和乙酸乙酯的归一化浓度较高,与聚碳酸酯生产相关的4#~6#指纹谱中归一化浓度较高的是苯乙烯、乙苯等苯系物。通过上述归一化浓度较高的物质和物质之间的相对关系,将走航监测结果与指纹谱匹配,初步验证了指纹谱的准确性。

参考文献 (22)

返回顶部

目录

/

返回文章
返回