Loading [MathJax]/jax/output/HTML-CSS/jax.js

电解法用于消毒的原理、技术特点与主要应用方式:电产次氯酸钠及电化学消毒

赵旭, 冒冉, 李昂臻, 孙拓, 乔梦. 电解法用于消毒的原理、技术特点与主要应用方式:电产次氯酸钠及电化学消毒[J]. 环境工程学报, 2020, 14(7): 1728-1734. doi: 10.12030/j.cjee.202002153
引用本文: 赵旭, 冒冉, 李昂臻, 孙拓, 乔梦. 电解法用于消毒的原理、技术特点与主要应用方式:电产次氯酸钠及电化学消毒[J]. 环境工程学报, 2020, 14(7): 1728-1734. doi: 10.12030/j.cjee.202002153
ZHAO Xu, MAO Ran, LI Angzhen, SUN Tuo, QIAO Meng. Principle, technical characteristics and main applications of electrolysis for disinfection: Electrochemical generation of sodium hypochlorite and electrochemical disinfection[J]. Chinese Journal of Environmental Engineering, 2020, 14(7): 1728-1734. doi: 10.12030/j.cjee.202002153
Citation: ZHAO Xu, MAO Ran, LI Angzhen, SUN Tuo, QIAO Meng. Principle, technical characteristics and main applications of electrolysis for disinfection: Electrochemical generation of sodium hypochlorite and electrochemical disinfection[J]. Chinese Journal of Environmental Engineering, 2020, 14(7): 1728-1734. doi: 10.12030/j.cjee.202002153

电解法用于消毒的原理、技术特点与主要应用方式:电产次氯酸钠及电化学消毒

    作者简介: 赵旭(1976—),男,博士,研究员。研究方向:环境电化学。E-mail:zhaoxu@rcees.ac.cn
    通讯作者: 赵旭, E-mail: zhaoxu@rcees.ac.cn
  • 基金项目:
    国家自然科学基金资助项目(51808535,51808512);国家水体污染控制与治理科技重大专项(2018ZX07110-002)
  • 中图分类号: X703.1

Principle, technical characteristics and main applications of electrolysis for disinfection: Electrochemical generation of sodium hypochlorite and electrochemical disinfection

    Corresponding author: ZHAO Xu, zhaoxu@rcees.ac.cn
  • 摘要: 电解法是利用电能实现氧化还原反应的方法,其应用于消毒通常有电产次氯酸钠消毒剂和电化学消毒2种方式。为深入了解电产次氯酸钠及电化学消毒技术机理,进一步探讨电解法在水处理和公共环境卫生消毒领域的应用,从消毒原理、技术特点、使用方法和消毒应用方面,对电解法制备次氯酸钠与电化学消毒水处理技术进行了介绍与分析,并提出了目前存在的问题和技术发展前景,为该技术的实际应用提供参考。
  • 大气扬尘造成的污染,严重影响着人群健康,会导致相关心血管和呼吸道疾病的发生[1-2]。扬尘排放已成为空气中PM2.5的重要来源[3-5]。其中,建筑施工所产生的扬尘是重要原因之一[6-8]。因此,施工扬尘问题亟待解决。

    目前,施工扬尘的主要解决措施有洒水、绿网覆盖及喷洒抑尘剂。喷洒抑尘剂具有抑尘效率高的优点,近年来受到了广泛关注。抑尘剂是一种多组份单相混合物,常根据其主要组分类型和作用特点将抑尘剂分为润湿型、黏结型、复合型等。润湿型抑尘剂中通常含有大量的表面活性剂类物质,以发挥对粉尘的润湿效果;例如,利用C9脂肪醇聚氧乙烯醚和十二烷基苯磺酸钠可制备出抑制煤尘的润湿型抑尘剂[9]。黏结型抑尘剂则常以高分子有机物等具有良好黏结性的物质为主;例如,以木质素磺酸盐作为主要原料,将甲基硅酸钠、四硼酸钠等为辅助剂可制成黏结型抑尘剂[10]

    随着全社会环境和生态意识的提高,抑尘剂的制备越来越重视其综合性能,绿色、安全的复合型、环保型抑尘剂是未来的发展方向。瓜尔胶[11-12]、海藻酸钠[13]等天然高分子都被作为原料来制备抑尘剂。更多研究者践行“以废治废”的理念,利用甘蔗渣[14],秸秆[15],塑料瓶[16]、废纸[17]等固体废弃物制备抑尘剂。城市绿化废弃物的产生量大,是现代城市发展中普遍面临的问题[18]。对其传统处理方式为填埋、焚烧和堆肥[19],一直以来较少有规范、有效的处理方法。本研究中利用典型的绿化废弃物——悬铃木枝条作为原料,探索制备复合型抑尘剂的途径;并阐明抑尘剂各组分对其各方面性能的影响。在以上研究的基础上,还利用TOPSIS法确定复合型抑尘剂各组分的最佳配比,以期为复合型抑尘剂的制备提供参考。

    采集城市绿化树种二球悬铃木(Platanus acerifolia)修剪下来的枝条为原料。实验用土样为自采黄土,采自西安建筑科技大学校园。

    氯化胆碱(C5H14ClNO)、辛癸基葡糖苷(APG0810)、聚乙烯醇([C2H4O]n,PVA)、乙二醇((CH2OH)2)、无水乙醇(CH3CH2OH)、硝酸(HNO3)、氢氧化钠(NaOH)、氯乙酸(C2H3ClO2)、盐酸(HCl)、硫酸铜(CuSO4)均为分析纯。

    1)悬铃木枝条的预处理。将悬铃木枝条置于鼓风干燥箱中100 ℃下干燥,使用分级式连续投料粉碎机(LF-40, 河北本辰科技有限公司)将干燥的枝条粉碎后,过200目筛后获得木粉。称取一定质量的木粉,加入到三口烧瓶中,按20∶1的质量液固比加入低共熔溶剂(deep-eutectic solvents, DES)(氯化胆碱和乙二醇按1∶3的质量比在60 ℃下混合均匀,搅拌30 min制得)。之后,使用加热套(SZCL, 天津工兴实验室仪器有限公司)加热烧瓶内的液体至160 ℃,搅拌维持6 h。最后,加入20 mL无水乙醇终止反应。将三口烧瓶置于冷水中冷却后,离心分离,所得固体残渣用无水乙醇洗涤2~3次,直至滤液无色。

    2)纤维素提取和羧甲基纤维素钠的制备。采用硝酸-乙醇法[20]从上述固体残渣中提取纤维素,即配制体积比为4∶1的硝酸-乙醇混合溶液作为提取溶剂;固体残渣和硝酸-乙醇溶液加热搅拌反应,多次提取直至纤维变白,然后洗涤烘干得到纤维素样品。

    在500 mL烧杯中,加入2.5 g从悬铃木枝条中提取出来的纤维素和100 mL混有4 g NaOH的70%乙醇水溶液,在40 ℃下恒温搅拌反应60 min,制得碱纤维素;向碱纤维素中加入含有6 g氯乙酸的70%乙醇水溶液25 mL,升温到70 ℃反应30 min;再加入含有2 g NaOH的70%乙醇水溶液25 mL作为碱性催化剂,在80 ℃下醚化反应90 min。待反应结束冷却后,用稀盐酸调节pH至中性,进行抽滤,然后将滤饼依次用75%和95%乙醇分别洗涤2次,60 ℃下干燥,即制得羧甲基纤维素钠(carboxymethyl cellulose sodium, CMC)[21]

    将制得的羧甲基纤维素钠进行初步鉴别[22]:取1 g制得的CMC,加温水50 mL,搅拌混匀,制成悬浊液,冷却后备用;取悬浊液25 mL,加20 g·L−1的CuSO4溶液5 mL,观察是否生成淡蓝色绒毛状沉淀。

    3)复合型抑尘剂的制备和单因素实验的设计。将制得的CMC粉末溶于纯水,充分搅拌混匀,得到CMC溶液。将絮状PVA和纯水混合,加热溶解得到PVA溶液。取APG0810和纯水进行搅拌,混合均匀得到APG0810溶液。按照一定的质量分数将三者进行配比混合,在水浴25 ℃下搅拌混匀,即制得复合型抑尘剂。

    选取黏结性、润湿性、抗风蚀性和生物毒性作为对复合型抑尘剂进行考察的评价指标。分别测定不同浓度CMC、PVA和APG0810溶液的黏度;在此基础上,选定合适的组分质量分数范围,通过单因素实验分别探究各组分用量对复合型抑尘剂的黏结性、润湿性、抗风蚀性、生物毒性的影响。

    1)表征分析。利用傅里叶漫反射红外光谱仪(Nicolet iS5, 美国Thermo Scientific公司)对提取产物和反应产物进行表征和确认。用扫描电子显微镜(JSM-6510LV, 日本电子公司)观察复合型抑尘剂喷洒前后的土样表面的微观形貌。

    2)复合型抑尘剂性能测定。复合型抑尘剂的黏结性决定了对尘土黏结、凝并的效果,以黏度为指标反映复合型抑尘剂的黏结性。用超声波黏度计(LVDV-2-PRO, 美国Brookfield公司)测量复合型抑尘剂黏度。

    润湿性可反映复合型抑尘剂渗入土层内部的能力,采用沉降时间和接触角可反映复合型抑尘剂的润湿性。在比色管中加入50 mL复合型抑尘剂,然后取1 g干燥的土粉碎至200目,将土沿漏斗倒入比色管中,准确记录土从接触抑尘剂至沉底所用的时间,即为沉降时间[12]。采用接触角测定仪(SL200A, 美国科诺公司)测量抑尘剂液滴的接触角。

    抗风蚀性可直接反映复合型抑尘剂的抑尘效果。以粉尘被吹蚀后的质量损失率为指标来反映复合型抑尘剂的抗风蚀性。称取25 g过200目烘干的土样于直径9 cm的培养皿中,堆成小土堆,向上面均匀喷洒10 mL复合型抑尘剂(满足喷洒量≥1.5 L·m−2的要求[23])。自然晾干8 h,土样表面形成固化层,进行称重。使用吹风机模拟自然风,进行风蚀实验。用风速仪(MS6252B, 杭州HYELEC公司)测定土样表面的风速为5.6 m·s−1(相当于四级风,可吹起沙粒和纸张),风蚀5 min后再次称重,按式(1)计算质量损失率[14, 24]

    质量损失率=m1m2m1×100% (1)

    式中:m1为吹蚀前土样和培养皿的总质量,g;m2为吹蚀后土样和培养皿的总质量,g。

    生物毒性可反映复合型抑尘剂对土壤中生物的毒性,本实验中以种子发芽率为指标来反映复合型抑尘剂的生物毒性。使用饱满、无霉的小麦种子,用纯水冲洗后过夜浸泡备用。在培养皿内放入1张滤纸作发芽床。每个发芽床上放置10粒种子,加入10 mL抑尘剂。将培养皿放入28 ℃恒温培养箱中进行培养,48 h后观察结果,按式(2)计算种子发芽率。

    种子发芽率=X1X2×100% (2)

    式中:X1为发芽的种子数量,个;X2为实验种子数量,个。

    3)TOPSIS法分析。TOPSIS法是一种逼近理想解的排序法,常用于多目标决策分析。若方案最靠近最优解,同时又最远离最劣解,则为最好。利用该方法对复合型抑尘剂的黏结性、润湿性、抗风蚀性和生物毒性进行综合性能分析,以确定各组分的最优配比。

    黏度和种子发芽率属于极大型指标,沉降时间和质量损失率属于极小型指标。将极小型指标数据按式(3)进行正向化;为了消除数据量纲的影响,按式(4)分别进行标准化。

    ¯xl=1xi (3)
    Zi=xini=1x2i (4)

    经过正向化和标准化之后的黏度、沉降时间、质量损失率和种子发芽率指标分别记为Z1Z2Z3Z4,对应权重分别为0.2、0.2、0.4和0.2。

    最优配比分析:指标到最优解的距离记为D+,按式(5)计算;指标到最劣解的距离记为D,按式(6)计算;综合性能指标为C,按式(7)计算。C越接近于1,就说明该方案更优。

    D+=0.2(Z1iZ1max)2+0.2(Z2iZ2max)2+0.4(Z3iZ3max)2+0.2(Z4iZ4max)2 (5)
    D=0.2(Z1iZ1min)2+0.2(Z2iZ2min)2+0.4(Z3iZ3min)2+0.2(Z4iZ4min)2 (6)
    C=DD++D (7)

    悬铃木枝条经预处理后得到黑褐色的固体残渣,从中提取产物则呈米白色;进一步碱化和醚化反应的产物为白色粉末,如图1(a)所示。白色粉末可溶于水形成淡黄色溶液,加入CuSO4后有蓝色絮状物生成,见图1(b)。这初步证明,利用悬铃木枝条制得的白色粉末为CMC。

    图 1  悬铃木枝条的提取产物和反应产物形态
    Figure 1.  Morphology of extracted products and reaction products from the Platanus branches

    自悬铃木提取的米白色产物红外吸收光谱见图2(a)。其中,3 400~3 600 cm−1(3 425 cm−1)为羟基(—OH)的伸缩振动吸收峰;2 911 cm−1为亚甲基—CH2伸缩振动吸收峰;1 000~1 200 cm−1(1066 cm−1)为纤维素分子链中—C—O—C—伸缩振动吸收峰;899 cm−1处为纤维素分子中葡萄糖单元之间 β-糖苷键的吸收峰。

    图 2  悬铃木枝条提取产物和反应产物的红外吸收光谱
    Figure 2.  FTIR of extracted products and reaction products from the Platanus branches

    白色反应产物的红外吸收光谱见图2(b)。可以看出,在1 600 cm−1左右出现的强烈吸收峰为CMC的特征峰;1 427 cm−1、1 327 cm−1分别为—CH2、—OH的弯曲振动吸收峰;1 266 cm−1处小峰为羧酸基团中 C—O 伸缩振动吸收峰;1 020~1 160 cm−1(1 067 cm−1)处为纤维素结构中—C—O—C—的对称与不对称振动吸收。

    以上结果证明,从悬铃木枝条中提取出的米白色物质为纤维素,该纤维素制品经过碱化和醚化反应后可制得CMC。

    我国现有的技术标准[23]对抑尘剂的黏度要求为:25 ℃温度条件下,抑尘剂黏度需大于5 mPa·s。通过前期预实验发现,当CMC的质量分数为0.20%时,其溶液黏度为7.32 mPa·s;如果进一步增大CMC的质量分数,溶液中会产生较多不溶物。PVA溶液质量分数在0.10%~2.00%时,黏度由1.28 mPa·s增大到5.52 mPa·s。APG0810含量较高时,溶液会产生较多泡沫,不易喷洒。因此,本研究选择质量分数分别为0.01%~0.20%、0.10%~2.00%、0.01%~0.30%的CMC、PVA、APG0810来考察各组分对复配抑尘剂各性能指标的影响。在探究某一组分对抑尘剂某一性能的影响时,需要控制其他2种组分的含量,控制的CMC、PVA、APG0810质量分数分别为0.10%、0.50%、0.10%。

    1)各组分含量对复合型抑尘剂黏结性的影响。由图3可以看出,CMC质量分数越大,复合型抑尘剂的黏度亦越大。在CMC的质量分数大于0.10%时,复合型抑尘剂的黏度均在5 mPa·s以上,可满足现行技术标准的要求。复合型抑尘剂的黏度亦随着PVA质量分数的增大而增加,当PVA质量分数在1.00%以上时,复合型抑尘剂的黏度增幅变大。而APG0810的质量分数对复合型抑尘剂黏度无明显影响。由以上结果可知,CMC的用量是决定复合型抑尘剂黏度的最主要因素。这是因为,CMC和PVA是良好的黏结剂,他们混合之后会比单组分的黏度更大,而APG0810是表面活性剂,无黏结性。

    图 3  不同CMC、PVA、APG0810含量条件下复合型抑尘剂的黏度
    Figure 3.  Viscosity of the composite dust suppressant with different CMC, PVA, APG0810 contents

    2)各组分含量对复合型抑尘剂润湿性的影响。图4显示了复合型抑尘剂的沉降时间和接触角随各组分的质量分数的变化情况。沉降时间和接触角均会随着CMC质量分数的增大而增加,这说明复合型抑尘剂的润湿性在逐渐降低。这很大程度上与复合型抑尘剂的黏度有关,CMC用量多,复合型抑尘剂黏度增加,但流动性和渗透性也随之变差,不易润湿尘土。在PVA质量分数小于1.50%时,沉降时间基本不变;但当PVA质量分数大于1.50%时,沉降时间则出现大幅增长。这与复合型抑尘剂黏度随PVA含量变化的规律十分相似。这也进一步说明,过大的黏度会导致抑尘剂润湿性下降。APG0810是表面活性剂,能使溶液表面张力显著下降,其质量分数越大,复合型抑尘剂的接触角和沉降时间越小,润湿性越好。

    图 4  不同CMC、PVA、APG0810含量条件下复合型抑尘剂的沉降时间和接触角
    Figure 4.  Settlement time and contact angle of the composite dust suppressant with different CMC、PVA、APG0810 contents

    3)各组分含量对复合型抑尘剂抗风蚀性的影响。复合型抑尘剂的质量损失率大致随各组分质量分数的增加而减小,但变化程度有差别(图5)。其中,PVA含量对质量损失率影响最大;当PVA含量从0.10%增加到2.00%时,复合型抑尘剂的质量损失率从2.21%降至1.06%。其中,仅在PVA质量分数为0.10%~0.50%时,质量损失率的降幅就高达32%。这说明,PVA对该抑尘剂的抗风蚀性贡献很大。这是因为,PVA具有良好的成膜性和吸湿保水性,使尘土潮湿结壳,不易扬起。CMC能够使粉尘颗粒黏结起来,而APG0810会使抑尘剂更易渗透入粉尘下层。这三者组分各自发挥相应的作用,可协同提高复合型抑尘剂的抗风蚀性。

    图 5  不同CMC、PVA、APG0810含量条件下复合型抑尘剂的质量损失率
    Figure 5.  Mass loss rate of the composite dust suppressant with different CMC, PVA, APG0810 contents

    4)各组分含量对复合型抑尘剂生物毒性的影响。由图6可以看出,CMC和PVA对小麦种子发芽率的影响不明显,而APG0810则表现出明显的抑制作用。当APG0810质量分数在0.10%以下时,种子发芽率基本维持在70%~85%;而当APG0810质量分数增至0.15%时,种子发芽率就骤降至30%;待APG0810含量进一步升高后,种子发芽率均为0。这说明,表面活性剂类物质是造成抑尘剂生物毒性的主要成分。

    图 6  不同CMC、PVA、APG0810含量条件下复合型抑尘剂的小麦发芽率
    Figure 6.  Wheat germination rate of the composite dust suppressant with different CMC, PVA, APG0810 contents

    5)土样表面喷洒抑尘剂前后的微观形貌。喷洒抑尘剂前后土样表面的微观形貌见图7,通过观察可发现,原本的土样表面有很多分散、细小的颗粒,粒径大都在20 μm以下。而当在土样表层喷洒复合型抑尘剂之后,原本的细小颗粒黏聚成团,其粒径至少增大了数10倍。由此可知,喷洒抑尘剂后,尘土颗粒黏结、凝并的效果较好。

    图 7  复合型抑尘剂喷洒前后土样表面的微观形貌
    Figure 7.  Surface micromorphology of soil samples before and after the composite dust suppressant spraying

    利用TOPSIS法计算出CMC、PVA和APG0810不同用量时的复合型抑尘剂综合性能指标C(表1)。如表1所示,随着各组分在复合型抑尘剂中的质量分数的增大,综合性能指标C并非呈现单纯的递增或递减趋势。这表明,黏结性、润湿性、抗风蚀性和生物毒性之间存在交互作用。当C最接近1时,该组分质量分数下获得的复合型抑尘剂综合性能最好。由表1还可以看出,在这3种主要组分的用量范围内,对应的最优综合性能指标C值分别为0.698 4、0.704 1和0.646 3。因此,具有最佳综合性能的复合型抑尘剂中CMC、PVA和APG0810的质量分数分别为0.20%、2.00%和0.10%。按此组分配比制得的抑尘剂在25 ℃下,黏度为41.97 mPa·s、沉降时间为68.62 s、质量损失率为0.57%、小麦种子发芽率为70%。

    表 1  各组分不同用量时的复合型抑尘剂综合性能指标C
    Table 1.  Comprehensive performance index C of the composite dust suppressant with different dosages of each component
    复配组分D+D-C
    名称质量分数/%
    CMC0.010.297 10.160 60.351 0
    0.0250.287 40.130 70.312 6
    0.050.265 00.111 20.295 6
    0.0750.238 90.116 00.326 9
    0.100.228 80.119 30.342 7
    0.150.136 00.224 80.622 9
    0.200.131 10.303 60.698 4
    PVA0.100.199 40.146 10.422 9
    0.250.181 50.127 90.413 4
    0.500.181 50.111 50.380 6
    0.750.161 80.122 00.429 8
    1.000.114 10.147 50.564 0
    1.500.103 90.168 30.618 5
    2.000.091 60.218 00.704 1
    APG08100.010.179 20.273 60.604 3
    0.050.152 70.258 50.628 7
    0.100.127 60.233 10.646 3
    0.150.193 70.139 80.419 1
    0.200.279 80.119 20.298 8
    0.250.274 80.149 80.352 8
    0.300.273 60.179 10.395 7
     | Show Table
    DownLoad: CSV

    1)悬铃木枝条经氯化胆碱-乙二醇低共熔溶剂法预处理后,再通过硝酸-乙醇法可提取出纤维素;之后,再通过碱性的醚化反应可制备出CMC。

    2)悬铃木来源的CMC与PVA、APG0810复配制得复合型抑尘剂,该抑尘剂的黏结性与抗风蚀性紧密联系,CMC和PVA对其有主要贡献;而APG0810则是影响抑尘剂润湿性和生物毒性的主要组分。

    3)通过TOPSIS法优化出的最佳综合性能复合型抑尘剂具有良好的黏结性,可以较好地润湿土壤,抗风蚀性良好,生物毒性较低。

  • 图 1  次氯酸钠发生器的工作原理

    Figure 1.  Schematic of electrolytic sodium hypochlorite generator

    图 2  电化学消毒原理示意图

    Figure 2.  Schematic diagram of electrochemical disinfection

  • [1] 薛冬霞. 钟南山团队实验室在患者粪便中检出新冠活病毒[EB/OL]. [2020-02-14]. https://m.thepaper.cn/newsDetail_forward_5957613.
    [2] 曹瑞钰. 氯消毒机理、危害及脱氯[J]. 中国给水排水, 1995, 11(4): 36-39.
    [3] 崔红军, 吴东升, 宋思怡, 等. 自来水厂采用次氯酸钠替代液氯消毒的可行性研究[J]. 中国给水排水, 2016, 32(19): 58-61.
    [4] 国家卫生健康委办公厅, 国家中医药管理局办公室. 新型冠状病毒肺炎诊疗方案(试行第五版 修正版): 国卫办医函(2020)117号[EB/OL]. [2020-02-08]. http://www.nhc.gov.cn/yzygj/s7653p/202002/d4b895337e19445f8d728fcaf1e3e13a.shtml.
    [5] 王庆松, 宋淑芬, 柯丞东. 次氯酸钠消毒在大型水厂的优化与创新[J]. 净水技术, 2019, 38(8): 130-134.
    [6] 纪海霞, 李利生, 王怡人. 现场制备次氯酸钠在净水厂中的设计应用[J]. 给水排水, 2019, 55(6): 40-43.
    [7] 廖建锋, 李有朵, 周祥雷. 现场次氯酸钠发生器在水厂供水消毒中的应用[J]. 中国给水排水, 2015, 31(15): 57-59.
    [8] 孙凝, 龚德洪. 次氯酸钠发生器在小型水厂的应用与成本研究[J]. 城镇供水, 2014(1): 77-79. doi: 10.3969/j.issn.1002-8420.2014.01.025
    [9] 魏恒. 次氯酸钠消毒系统在水厂的应用研究[J]. 中国给水排水, 2017, 33(17): 46-49.
    [10] 陆宇骏. 次氯酸钠现场生产系统在大中型水厂的应用[J]. 净水技术, 2010, 29(1): 70-73. doi: 10.3969/j.issn.1009-0177.2010.01.017
    [11] 王新为, 李劲松, 金敏, 等. SARS冠状病毒的抵抗力研究[J]. 环境与健康杂志, 2004(2): 67-71. doi: 10.3969/j.issn.1001-5914.2004.02.001
    [12] 张文福, 何俊美, 帖金凤, 等. 冠状病毒的抵抗力与消毒[J/OL]. [2020-02-12]. 中国消毒学杂志, 2020(1): 1-5. http://kns.cnki.net/kcms/detail/11.2672.R.20200130.1723.002.html.
    [13] 王长河. 全自动次氯酸钠现场制备投加系统在水务行业应用[C]//中国城市科学研究会, 中国城镇供水排水协会, 重庆市住房和城乡建设委员会, 重庆市城市管理局. 第十三届中国城镇水务发展国际研讨会与新技术设备博览会论文集, 2018: 73-76.
    [14] TONG W, FORSTER M, DIONIGI F, et al. Electrolysis of low-grade and saline surface water[J/OL]. Nature Energy. [2020-02-12]. https://doi.org/10.1038/s41560-020-0550-8.
    [15] LI H, ZHANG Z, DUAN J, et al. Electrochemical disinfection of secondary effluent from a wastewater treatment plant: Removal efficiency of ARGs and variation of antibiotic resistance in surviving bacteria[J]. Chemical Engineering Journal, 2019, 392: 123674.
    [16] FENG W, DELETIC A, WANG Z, et al. Electrochemical oxidation disinfects urban stormwater: Major disinfection mechanisms and longevity tests[J]. Science of the Total Environment, 2019, 646: 1440-1447. doi: 10.1016/j.scitotenv.2018.07.307
    [17] 孟志国, 王金生, 杨蕴哲. 原位电化学杀菌技术处理循环冷却水[J]. 环境工程学报, 2010, 4(4): 852-854.
    [18] 曲久辉, 刘会娟. 水处理电化学原理与技术[M]. 北京: 科学出版社, 2007.
    [19] VERNHES M C, BENICHOU A, PERNIN P, et al. Elimination of free-living amoebae in fresh water with pulsed electric fields[J]. Water Research, 2002, 36(14): 3429-3438. doi: 10.1016/S0043-1354(02)00065-9
    [20] KRAFT A, STADELMANN M, BLASCHKE M, et al. Electrochemical water disinfection Part I: Hypochlorite production from very dilute chloride solutions[J]. Journal of Applied Electrochemistry, 1999, 29(7): 859-866. doi: 10.1023/A:1003650220511
    [21] JEONG J, KIM C, YOON J. The effect of electrode material on the generation of oxidants and microbial inactivation in the electrochemical disinfection processes[J]. Water Research, 2009, 43(4): 895-901. doi: 10.1016/j.watres.2008.11.033
    [22] SCHMALZ V, DITTMAR T, HAAKEN D, et al. Electrochemical disinfection of biologically treated wastewater from small treatment systems by using boron-doped diamond (BDD) electrodes: Contribution for direct reuse of domestic wastewater[J]. Water Research, 2009, 43(20): 5260-5266. doi: 10.1016/j.watres.2009.08.036
    [23] 赵树理, 庞宇辰, 席劲瑛, 等. 电化学消毒法对水中大肠杆菌的灭活特性[J]. 环境科学学报, 2016, 36(2): 544-549.
    [24] POLCARO A M, VACCA A, MASCIA M, et al. Characterization of a stirred tank electrochemical cell for water disinfection processes[J]. Electrochimica Acta, 2007, 52(7): 2595-2602. doi: 10.1016/j.electacta.2006.09.015
    [25] JIN Y, SHI Y, CHEN R, et al. Electrochemical disinfection using a modified reticulated vitreous carbon cathode for drinking water treatment[J]. Chemosphere, 2019, 215: 380-387. doi: 10.1016/j.chemosphere.2018.10.057
    [26] 柯跃华, 龚泰石, 杨敏, 等. 再生水电化学消毒电极材料的选择与评价[J]. 给水排水, 2006, 32(S1): 137-140.
    [27] 宋琳. 中水的电化学安全消毒技术研究[D]. 北京: 中国地质大学(北京), 2012.
    [28] SNOEYINK V L, JENKINS D. 水化学[M]. 蒋展鹏, 刘希曾, 译. 北京: 中国建筑工业出版社, 1990.
    [29] 张琳, 刘文君. 电化学消毒效果的影响因素研究[J]. 中国给水排水, 2006, 36(23): 70-73. doi: 10.3321/j.issn:1000-4602.2006.23.018
    [30] HEFFRON J, RYAN D R, MAYER B K. Sequential electrocoagulation-electro oxidation for virus mitigation in drinking water[J]. Water Research, 2019, 160: 435-444. doi: 10.1016/j.watres.2019.05.078
    [31] 丁晶. 电化学工艺用于污水深度处理同步脱氮消毒的性能与机制[D]. 哈尔滨: 哈尔滨工业大学, 2016.
    [32] 常玉, 刁慧芳, 施汉昌. 电化学消毒法处理回用水的可行性研究[J]. 环境污染治理技术与设备, 2002, 3(12): 46-50.
    [33] MARTINEZ-HUITLE C A, BRILLAS E. Electrochemical alternatives for drinking water disinfection[J]. Angewandte Chemie International Edition, 2008, 47(11): 1998-2005. doi: 10.1002/anie.200703621
    [34] 徐文英, WAGNER M. 二沉池出水的电化学消毒试验研究[J]. 环境工程学报, 2007, 1(7): 35-41. doi: 10.3969/j.issn.1673-9108.2007.07.007
    [35] 柯跃华. 再生水电化学消毒的应用研究[D]. 北京: 中国人民解放军军事医学科学院, 2007.
    [36] 周键, 王三反, 薛志强, 等. Ti/SnO2-Sb2O3/β-PbO2阳极消毒处理医院污水[J]. 环境工程学报, 2014, 8(10): 4110-4114.
    [37] 陈喆, 樊金红, 刘燕, 等. 生物性污染废水的电化学消毒试验研究[J]. 水处理技术, 2009, 35(3): 49-52.
    [38] 李小虎, 朱能武, 李冲, 等. 以养殖废水为底料的微生物燃料电池产电性能与水质净化效果[J]. 环境工程学报, 2012, 6(7): 2189-2194.
    [39] HUANG X, QU Y, CID C A, et al. Electrochemical disinfection of toilet wastewater using wastewater electrolysis cell[J]. Water Research, 2016, 92: 164-172. doi: 10.1016/j.watres.2016.01.040
    [40] HUO Z Y, XIE X, YU T, et al. Nanowire-modified three-dimensional electrode enabling low-voltage electroporation for water disinfection[J]. Environmental Science & Technology, 2016, 50(14): 7641-7649.
    [41] CID C A, QU Y, HOFFMANN M R. Design and preliminary implementation of onsite electrochemical wastewater treatment and recycling toilets for the developing world[J]. Environmental Science: Water Research & Technology, 2018, 4(10): 1439-1450.
    [42] HONG X, WEN J, XIONG X, et al. Silver nanowire-carbon fiber cloth nanocomposites synthesized by UV curing adhesive for electrochemical point-of-use water disinfection[J]. Chemosphere, 2016, 154: 537-545. doi: 10.1016/j.chemosphere.2016.04.013
    [43] 谭晓君, 胡勇有, 陈超. 银纳米线复合静电纺丝膜终端饮用水处理装置电化学消毒效能研究[J]. 环境科学学报, 2018, 38(10): 3964-3972.
    [44] 陈喆, 王红武, 马鲁铭. 电化学杀菌水处理技术研究进展[J]. 工业用水与废水, 2008, 39(6): 1-5. doi: 10.3969/j.issn.1009-2455.2008.06.001
  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 2.7 %DOWNLOAD: 2.7 %HTML全文: 94.4 %HTML全文: 94.4 %摘要: 2.9 %摘要: 2.9 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 91.8 %其他: 91.8 %Anwo: 0.0 %Anwo: 0.0 %Ashburn: 0.0 %Ashburn: 0.0 %Ban Krabi Noi: 0.0 %Ban Krabi Noi: 0.0 %Beijing: 2.4 %Beijing: 2.4 %Buraidah: 0.0 %Buraidah: 0.0 %Casablanca: 0.0 %Casablanca: 0.0 %Central: 0.0 %Central: 0.0 %Chang'an: 0.0 %Chang'an: 0.0 %Changsha: 0.1 %Changsha: 0.1 %Chaowai: 0.0 %Chaowai: 0.0 %Chengdu: 0.1 %Chengdu: 0.1 %Chicago: 0.1 %Chicago: 0.1 %Chiyoda: 0.0 %Chiyoda: 0.0 %Clifton: 0.0 %Clifton: 0.0 %Daegu: 0.0 %Daegu: 0.0 %Dalian: 0.1 %Dalian: 0.1 %Dongguan: 0.0 %Dongguan: 0.0 %East Bridgewater: 0.0 %East Bridgewater: 0.0 %Erlangen: 0.0 %Erlangen: 0.0 %Foshan: 0.0 %Foshan: 0.0 %Futian: 0.0 %Futian: 0.0 %Fuzhou: 0.1 %Fuzhou: 0.1 %Gangnam-gu: 0.0 %Gangnam-gu: 0.0 %Gaocheng: 0.0 %Gaocheng: 0.0 %Ghent: 0.0 %Ghent: 0.0 %Gorgan: 0.0 %Gorgan: 0.0 %Guangzhou: 0.0 %Guangzhou: 0.0 %Gulan: 0.0 %Gulan: 0.0 %Hangzhou: 0.1 %Hangzhou: 0.1 %Harbin: 0.0 %Harbin: 0.0 %Hongkou: 0.0 %Hongkou: 0.0 %Huangpu Qu: 0.0 %Huangpu Qu: 0.0 %Huzhou: 0.0 %Huzhou: 0.0 %Hyderabad: 0.0 %Hyderabad: 0.0 %Jinan: 0.1 %Jinan: 0.1 %Jinrongjie: 0.2 %Jinrongjie: 0.2 %Khabarovsk: 0.0 %Khabarovsk: 0.0 %Kunming: 0.0 %Kunming: 0.0 %Loudi: 0.0 %Loudi: 0.0 %Lucknow: 0.0 %Lucknow: 0.0 %luohe shi: 0.1 %luohe shi: 0.1 %Luoyang: 0.0 %Luoyang: 0.0 %Makati City: 0.0 %Makati City: 0.0 %Manama: 0.0 %Manama: 0.0 %Meiyuan Xincun: 0.0 %Meiyuan Xincun: 0.0 %Mexico City: 0.0 %Mexico City: 0.0 %Montreal: 0.0 %Montreal: 0.0 %Mountain View: 0.1 %Mountain View: 0.1 %Nagpur: 0.0 %Nagpur: 0.0 %Nanchang: 0.0 %Nanchang: 0.0 %Nanyang: 0.1 %Nanyang: 0.1 %Newark: 0.0 %Newark: 0.0 %Polignano a Mare: 0.0 %Polignano a Mare: 0.0 %Qingdao: 0.1 %Qingdao: 0.1 %Qinnan: 0.0 %Qinnan: 0.0 %Quanzhou: 0.0 %Quanzhou: 0.0 %Queenstown Estate: 0.1 %Queenstown Estate: 0.1 %Seoul: 0.1 %Seoul: 0.1 %Shanghai: 0.1 %Shanghai: 0.1 %Shenyang: 0.0 %Shenyang: 0.0 %Shenzhen: 0.1 %Shenzhen: 0.1 %Shijiazhuang: 0.0 %Shijiazhuang: 0.0 %Shiraz: 0.0 %Shiraz: 0.0 %Songjiang: 0.0 %Songjiang: 0.0 %Suwanee: 0.0 %Suwanee: 0.0 %Suzhou: 0.0 %Suzhou: 0.0 %Taipei: 0.0 %Taipei: 0.0 %Taiyuan: 0.0 %Taiyuan: 0.0 %Tehran: 0.0 %Tehran: 0.0 %The Bronx: 0.0 %The Bronx: 0.0 %Tianjin: 0.1 %Tianjin: 0.1 %Wulaocun: 0.0 %Wulaocun: 0.0 %Wulipu: 0.0 %Wulipu: 0.0 %Wuxi: 0.0 %Wuxi: 0.0 %Xi'an: 0.0 %Xi'an: 0.0 %Xiamen: 0.0 %Xiamen: 0.0 %Xiangtan: 0.0 %Xiangtan: 0.0 %Xingfeng: 0.0 %Xingfeng: 0.0 %Xinzhou: 0.0 %Xinzhou: 0.0 %Xuzhou: 0.0 %Xuzhou: 0.0 %XX: 1.5 %XX: 1.5 %Yancheng: 0.0 %Yancheng: 0.0 %Yangjiang: 0.0 %Yangjiang: 0.0 %Yinchuan: 0.0 %Yinchuan: 0.0 %Yuncheng: 0.0 %Yuncheng: 0.0 %Yunlin: 0.0 %Yunlin: 0.0 %Zhengzhou: 0.0 %Zhengzhou: 0.0 %Zhongba: 0.0 %Zhongba: 0.0 %Zhuhai: 0.0 %Zhuhai: 0.0 %上海: 0.1 %上海: 0.1 %上饶: 0.0 %上饶: 0.0 %中山: 0.0 %中山: 0.0 %佛山: 0.0 %佛山: 0.0 %保定: 0.0 %保定: 0.0 %兰州: 0.0 %兰州: 0.0 %包头: 0.0 %包头: 0.0 %北京: 0.4 %北京: 0.4 %北海: 0.0 %北海: 0.0 %南京: 0.0 %南京: 0.0 %南宁: 0.0 %南宁: 0.0 %南平: 0.0 %南平: 0.0 %南阳: 0.0 %南阳: 0.0 %博尔塔拉: 0.0 %博尔塔拉: 0.0 %厦门: 0.0 %厦门: 0.0 %台州: 0.0 %台州: 0.0 %呼和浩特: 0.0 %呼和浩特: 0.0 %哈尔滨: 0.0 %哈尔滨: 0.0 %嘉兴: 0.0 %嘉兴: 0.0 %四平: 0.0 %四平: 0.0 %天津: 0.0 %天津: 0.0 %太原: 0.0 %太原: 0.0 %威海: 0.0 %威海: 0.0 %宁波: 0.0 %宁波: 0.0 %广州: 0.0 %广州: 0.0 %成都: 0.0 %成都: 0.0 %抚州: 0.0 %抚州: 0.0 %无锡: 0.0 %无锡: 0.0 %晋城: 0.0 %晋城: 0.0 %杭州: 0.1 %杭州: 0.1 %枣庄: 0.0 %枣庄: 0.0 %株洲: 0.0 %株洲: 0.0 %桂林: 0.0 %桂林: 0.0 %武汉: 0.0 %武汉: 0.0 %沈阳: 0.0 %沈阳: 0.0 %济南: 0.0 %济南: 0.0 %淄博: 0.0 %淄博: 0.0 %淮南: 0.0 %淮南: 0.0 %深圳: 0.0 %深圳: 0.0 %温州: 0.0 %温州: 0.0 %漯河: 0.0 %漯河: 0.0 %烟台: 0.0 %烟台: 0.0 %盐城: 0.0 %盐城: 0.0 %石嘴山: 0.0 %石嘴山: 0.0 %石家庄: 0.0 %石家庄: 0.0 %福州: 0.0 %福州: 0.0 %芝加哥: 0.0 %芝加哥: 0.0 %苏州: 0.0 %苏州: 0.0 %荆州: 0.0 %荆州: 0.0 %莆田: 0.0 %莆田: 0.0 %西宁: 0.0 %西宁: 0.0 %西安: 0.0 %西安: 0.0 %许昌: 0.0 %许昌: 0.0 %贵港: 0.0 %贵港: 0.0 %赣州: 0.0 %赣州: 0.0 %运城: 0.0 %运城: 0.0 %郑州: 0.0 %郑州: 0.0 %重庆: 0.0 %重庆: 0.0 %银川: 0.0 %银川: 0.0 %锦州: 0.0 %锦州: 0.0 %长春: 0.0 %长春: 0.0 %长沙: 0.0 %长沙: 0.0 %长治: 0.0 %长治: 0.0 %阳泉: 0.0 %阳泉: 0.0 %青岛: 0.0 %青岛: 0.0 %黄冈: 0.0 %黄冈: 0.0 %其他AnwoAshburnBan Krabi NoiBeijingBuraidahCasablancaCentralChang'anChangshaChaowaiChengduChicagoChiyodaCliftonDaeguDalianDongguanEast BridgewaterErlangenFoshanFutianFuzhouGangnam-guGaochengGhentGorganGuangzhouGulanHangzhouHarbinHongkouHuangpu QuHuzhouHyderabadJinanJinrongjieKhabarovskKunmingLoudiLucknowluohe shiLuoyangMakati CityManamaMeiyuan XincunMexico CityMontrealMountain ViewNagpurNanchangNanyangNewarkPolignano a MareQingdaoQinnanQuanzhouQueenstown EstateSeoulShanghaiShenyangShenzhenShijiazhuangShirazSongjiangSuwaneeSuzhouTaipeiTaiyuanTehranThe BronxTianjinWulaocunWulipuWuxiXi'anXiamenXiangtanXingfengXinzhouXuzhouXXYanchengYangjiangYinchuanYunchengYunlinZhengzhouZhongbaZhuhai上海上饶中山佛山保定兰州包头北京北海南京南宁南平南阳博尔塔拉厦门台州呼和浩特哈尔滨嘉兴四平天津太原威海宁波广州成都抚州无锡晋城杭州枣庄株洲桂林武汉沈阳济南淄博淮南深圳温州漯河烟台盐城石嘴山石家庄福州芝加哥苏州荆州莆田西宁西安许昌贵港赣州运城郑州重庆银川锦州长春长沙长治阳泉青岛黄冈Highcharts.com
图( 2)
计量
  • 文章访问数:  18905
  • HTML全文浏览数:  18905
  • PDF下载数:  352
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-02-27
  • 录用日期:  2020-05-28
  • 刊出日期:  2020-07-01
赵旭, 冒冉, 李昂臻, 孙拓, 乔梦. 电解法用于消毒的原理、技术特点与主要应用方式:电产次氯酸钠及电化学消毒[J]. 环境工程学报, 2020, 14(7): 1728-1734. doi: 10.12030/j.cjee.202002153
引用本文: 赵旭, 冒冉, 李昂臻, 孙拓, 乔梦. 电解法用于消毒的原理、技术特点与主要应用方式:电产次氯酸钠及电化学消毒[J]. 环境工程学报, 2020, 14(7): 1728-1734. doi: 10.12030/j.cjee.202002153
ZHAO Xu, MAO Ran, LI Angzhen, SUN Tuo, QIAO Meng. Principle, technical characteristics and main applications of electrolysis for disinfection: Electrochemical generation of sodium hypochlorite and electrochemical disinfection[J]. Chinese Journal of Environmental Engineering, 2020, 14(7): 1728-1734. doi: 10.12030/j.cjee.202002153
Citation: ZHAO Xu, MAO Ran, LI Angzhen, SUN Tuo, QIAO Meng. Principle, technical characteristics and main applications of electrolysis for disinfection: Electrochemical generation of sodium hypochlorite and electrochemical disinfection[J]. Chinese Journal of Environmental Engineering, 2020, 14(7): 1728-1734. doi: 10.12030/j.cjee.202002153

电解法用于消毒的原理、技术特点与主要应用方式:电产次氯酸钠及电化学消毒

    通讯作者: 赵旭, E-mail: zhaoxu@rcees.ac.cn
    作者简介: 赵旭(1976—),男,博士,研究员。研究方向:环境电化学。E-mail:zhaoxu@rcees.ac.cn
  • 1. 中国科学院生态环境研究中心,饮用水科学与技术重点实验室,北京 100085
  • 2. 中国城市规划设计研究院,北京 100037
  • 3. 河北工业大学土木与交通学院,天津 300401
基金项目:
国家自然科学基金资助项目(51808535,51808512);国家水体污染控制与治理科技重大专项(2018ZX07110-002)

摘要: 电解法是利用电能实现氧化还原反应的方法,其应用于消毒通常有电产次氯酸钠消毒剂和电化学消毒2种方式。为深入了解电产次氯酸钠及电化学消毒技术机理,进一步探讨电解法在水处理和公共环境卫生消毒领域的应用,从消毒原理、技术特点、使用方法和消毒应用方面,对电解法制备次氯酸钠与电化学消毒水处理技术进行了介绍与分析,并提出了目前存在的问题和技术发展前景,为该技术的实际应用提供参考。

English Abstract

  • 2019年末暴发的新型冠状病毒肺炎敲响公共与个人卫生安全的警钟。研究者在新型冠状病毒肺炎患者的粪便样本中分离出活性新型冠状病毒[1]。因此,有必要对公共场所、公共设施及水(包括饮用水、污水及医疗废水等)进行消毒处理,以阻断疫病的进一步传播,保护人员健康并保障水质与水环境安全。

    常用的消毒工艺有加氯消毒、紫外线消毒、二氧化氯消毒和臭氧消毒等。电解法现场制次氯酸钠消毒属于一种氯消毒方式。该方法安全可靠,已被广泛用于水处理和卫生消毒中。另外,电化学消毒作为一种新型消毒技术,近年来也受到较多关注。该技术已在一些现场应急处理处置中发挥作用。本研究针对电解法制备次氯酸钠与电化学消毒技术,从原理、特点、使用方法和发展前景等方面进行了介绍与分析,为相关消毒技术的实际应用提供参考。

  • 次氯酸钠是高效广谱的含氯杀菌消毒剂,在杀灭病菌与病毒中发挥着重要作用。次氯酸钠通过水解生成次氯酸(HClO)和氯离子起到杀菌消毒作用。HClO的作用原理有2个方面:破坏细胞壁、病毒外壳,因其分子小、呈电中性,进入生物体内与菌(病毒)体核酸、蛋白和酶等发生氧化反应,进而杀死病原微生物[2-3];反应产物氯离子通过改变细菌和病毒体的渗透压使其丧失活性最终死亡[3]。国家卫生健康委办公厅和国家中医药管理局办公室联合发布的《新型冠状病毒感染的肺炎诊疗方案(试行第五版)》指出,含氯消毒剂可有效灭活新型冠状病毒[4]

    次氯酸钠的获得方式有2种:一是向氯碱厂购买商品次氯酸钠溶液(制备方法为液碱氯化法,是氯碱厂的副产品);二是利用次氯酸钠发生器现场电解制备。商品次氯酸钠易分解,无法长期贮存,需频繁运输,且质量参差不齐[5]。现场电解法制备次氯酸钠具有原料安全、自控程度高、综合运行成本低等优点。相比投加成品次氯酸钠,现场制备次氯酸钠的消毒稳定性更高[6-7]。同时,该方法也避免了使用成品次氯酸钠、液氯和二氧化氯时存在的危险品运输和存储的安全风险等问题。

    现场次氯酸钠发生器采用氯化钠溶液电解制备次氯酸钠溶液,总化学反应如式(1)所示,电化学反应如式(2)和式(3)所示,化学反应如式(4)所示。其原理见图1

    次氯酸钠的现场制备包括盐水精制、软水处理、盐水电解、次氯酸钠脱气储存等工序,最终制成次氯酸钠液体。电解工序通常在无隔膜电解槽中进行。阳极一般选用表面涂有钌、铱等金属氧化物涂层的钛基体电极,阴极采用耐腐蚀性好的钛或钛合金电极。市面上常见的发生器设备型号中的数字代表每小时产生总有效氯克数(有效氯产率),其中,有效氯是指与每升产生的次氯酸钠溶液所具有的氧化能力相当的氯气质量。该指标可用来定量表示消毒效果。根据法拉第定律,电解槽每通过1 A·h的电量,有效氯的理论生成量为1.323 g。

  • 次氯酸钠发生器的设计与制造须遵循《次氯酸钠发生器》(GB 12176-1990)、《次氯酸钠发生器安全与卫生标准》(GB 28233-2011)和《供配电系统设计规范》(GB 50052-2009)等技术标准及设计规范。使用前,应对操作人员进行严格的技术和安全培训,确保安全生产操作。发生器装配有排氢系统和氢气检测报警系统。工作过程中,应将电解产生的氢气及时排放进大气中,避免爆炸危险。通过风机可将其浓度稀释至1%以下,设备间也能保持通风良好[6]。电解槽电极是现场制备次氯酸钠设备的核心部件,需定期清洗维护,以免电极结垢引起电解槽能耗升高或产能下降[6]。清洗时,应避免损害钛阳极的表面涂层,产生的酸性废水排放前需加碱中和处理。

    次氯酸钠消毒液应根据使用需要现场制备,并贮存在阴凉干燥处,远离火源,不得与易燃物接触或与还原物质共储共运。消毒液制成后,存放时间不宜超过24 h,在使用前先测定有效氯含量。消毒液外观应清澈透明(无色或浅黄色),无可见杂质和分层沉淀,原液pH为8~10。

  • 电解法次氯酸钠发生器适用于自来水厂、污水处理厂和工业废水的消毒处理工艺。从消毒能力方面考虑,次氯酸钠的消毒效果与液氯相当,且更有利于避免生成消毒副产物[8-9];从安全角度考虑,现场电解法制备次氯酸钠的优势较为突出。发生器的原料为成品氯化钠,其采购质量和运输安全均易得到保障。然而,从自来水厂运营成本来考虑,现场制备次氯酸钠的主要问题是一次性投资高及耗电量较高[6,10]。因此,目前国内大多数以次氯酸钠代替液氯消毒的水厂仍倾向于采用浓度为10%的氯碱厂生产的次氯酸钠溶液进行消毒[10]。与采用商品次氯酸钠溶液相比,采用现场制备系统获得次氯酸钠的方式设备投资较大,但药剂单价低、综合运行成本低,一般在现场运行4~6 a后即可收回投资[10]。以日供水7×105 t的浙江宋六陵水厂为例,次氯酸钠现场生产设备前期投资约6×106元,但是相比采用成品次氯酸钠溶液,消毒成本每年可节约1×106元以上[5]。另外,次氯酸钠发生器可在谷电价时段运行,夜间生产的次氯酸钠贮存后供白天使用,可降低运行成本[7]。国内外有多个大中型水厂采用现场电解制备次氯酸钠的消毒方式。该方式运行稳定可靠、安全环保,将成为水厂供水消毒的重要发展方向[5,7]

    次氯酸钠发生器还可用于医院、酒店、饭店及公共设施环境的安全消毒,在预防性消毒、传染病污染的消毒防疫中发挥作用[11-12]。《次氯酸钠发生器安全与卫生标准》(GB 28233-2011)明确规定了次氯酸钠消毒液杀灭微生物的指标:消毒液浓度(以有效氯计)为100 mg·L−1,作用时间为10 min,对大肠杆菌的杀灭对数值≥5;浓度为200 mg·L−1,作用时间为20 min时,对脊髓灰质炎病毒-I型疫苗株的杀灭对数值≥4。

    我国已生产出具有自主知识产权的高端大型发生器,并应用在次氯酸钠现场制备中。次氯酸钠发生系统发展初期存在的阳极防腐能力差、可控硅电源能耗大、自动化控制欠佳等限制性问题现已逐步解决[13]。研制出电流效率高、耐久性好、产率高的电解设备是未来次氯酸钠发生器研发领域的重点方向。次氯酸钠发生系统的发展将呈现高度集成化、智能化、高效化的趋势,并进一步降低单位有效产氯能耗[13-14]

  • 电化学消毒水处理指经由通电装置来消灭水中(包括饮用水、污水和工业废水等)微生物的过程,对大多数微生物(如病毒、细菌、真菌和藻类等)都有良好的消毒效果 [15-17]。电化学消毒的机理包括物理和化学等多种作用机制和反应过程[18](见图2)。电化学消毒原理包括电场直接破坏及电极表面吸附、电催化析氯和电产氧化活性物种3个方面。

    1)电场直接破坏及电极表面吸附。电场可破坏细菌细胞膜,使之分解或者膨胀破裂(电穿孔现象),从而导致细菌死亡;或细菌吸附于电极表面,发生直接电子传递,其细胞内辅酶CoA被氧化,导致细胞呼吸系统失调而死亡。另外,电场驱动下的细胞电泳等会影响细菌代谢功能,对杀菌作用亦有贡献[19]

    2)电催化析氯。当水中存在氯离子时,氯离子在阳极表面可被氧化生成氯气,氯气进而与水反应生成次氯酸(盐),消毒机制与前述次氯酸钠消毒相似,同样具有广谱的消毒作用[20]

    3)电产氧化活性物种。水分子、溶解氧等在电化学体系中会发生一系列反应,生成·OH、H2O2和O3等活性氧化物种。这些强氧化性物种可使微生物快速被氧化破坏而死亡。氧化活性物种的生成效率与电极材料催化活性、电解液组分和操作条件(曝气)[21-23]等密切相关。

  • 在电化学消毒过程中,电极材料、氯离子浓度、电流密度、处理时间、电解液(电导率、pH)、反应器结构、水动力条件及循环方式等都会影响电化学消毒效率。电极材料的电势窗、析氯性能、产自由基能力等为选择电极时需要重点考虑的因素。目前,成熟稳定的阳极材料主要为涂有贵金属(钌、铂、铱和钽中之一种或多种)氧化物的钛电极,阴极材料主要有钛、不锈钢和石墨。氯离子浓度的提高可增加水中活性氯含量;电流密度的提高可促进电化学反应及活性物种生成,提高杀菌效率,但过高也会加剧水解副反应,降低电流效率;从能耗角度考虑,电流密度大小还应与反应时间统筹考虑[24-27]。酸性环境(pH < 6)有利于提高HClO浓度,而通常HClO杀菌效力是ClO的80~100倍[28]。反应器结构、电极形状和排布、电极间距等会影响电场强度、传质效率、水力流态和一次性投资费用。循环流电化学消毒相比单向流更适用于氯离子含量较低的二次水箱水的消毒,且低流量下(6 L·min−1,二次水箱蓄水量为10 m3)细菌的灭活效果比高流量下(14 L·min−1)的略好[29]

  • 电化学消毒技术主要特点包括4个方面:1)可杀死多种有害微生物,反应速率快,电产活性氯和H2O2具有持续消毒能力;2)无需或仅需投加少量药剂、设备紧凑占地少、自控程度高;3)可结合其他电化学处理过程(电絮凝、电气浮及电催化氧化还原等)进行一体化设计[30-31],实现水中污染物的同步去除;4)电化学法消毒过程中消毒副产物三氯甲烷的量低于加氯消毒过程[32]

    目前,电化学消毒相关研究主要集中在饮用水、污水处理厂二沉池出水、再生水、医院污水、生物性污染废水、海水养殖场养殖水和厕所废水等水源的消毒处理,研究层次还停留在实验探究或示范工程阶段[33-39]。HUO等[40]将CuO纳米线负载于三维泡沫铜电极上,建立了一种新型纳米线电穿孔消毒体系;在外接电压1 V、接触时间7 s时,纳米线尖端附近产生的强电场可将水中细菌全部杀灭,且无消毒副产物生成;该技术可为偏远地区居民提供可靠的安全饮用水消毒保障技术,具有良好的应用前景。周键等[36]采用电化学方法消毒处理医院污水,用Ti/SnO2-Sb2O3/β-PbO2作阳极,碳纤维为阴极;在电流密度为80 A·m−2,不需要额外添加电解质的情况下,消毒12 min后,出水的粪大肠菌群数小于500 cfu·L−1,符合污水综合排放一级标准(GB 8978-1996)。徐文英等[34]采用阳极为形稳电极、阴极为不锈钢板的电化学装置对德国Wiesbaden污水处理厂的二沉池出水进行消毒,发现电压为3~15 V、处理时间为6.5~37.5 s条件下,细菌去除率达到82.61%~99.16%,平均能耗仅为0.11 kWh·m−3。该研究表明,电化学消毒是一种低能耗、无污染、高效率的污水消毒方法。CID等[41]报道了一种自给式生态厕所的尿液废水经生化预处理和电化学氧化消毒后作为冲洗水回用的水循环模式;该技术现已在一些没有条件使用抽水马桶的发展中国家、灾害安置区、学校和景区等地得到开发和应用实践。

    由于电化学消毒技术具有安全高效、方便灵活、环境友好的特点,可利用在无集中供水地区的安全终端饮用水供应、小规模应急消毒保障、生态设施中水回用等特定应用场景[42-43],发展前景广阔。然而,该技术的大规模工程化应用仍存在一些限制因素:1)消毒机理和适用条件尚不十分明确,关键消毒物种的调控规律仍有待深入研究;2)当前主流的高效稳定阳极仍为贵金属涂层钛电极,一次性投入成本较高;3)运行过程中可能存在阴极结垢、电解水副反应和水质变化引起的电流效率下降等问题。为解决电化学消毒技术的应用问题,还依赖于材料、电子和电化学反应控制理论与技术等领域的不断发展进步[44]

  • 电解法现场制备次氯酸钠技术已在水务行业、公共设施环境的卫生消毒等方面有成熟的应用示范,具有原料简单、安全实效、消毒稳定性好的优点,在多个消毒场景发挥着非常重要的作用。研制电流效率高、耐久性好、产率高的电解槽是现阶段重点研究方向。次氯酸钠发生系统将朝着整机高度集成化、智能化、高效化以及更低能耗的方向发展。

    电化学消毒灭菌水处理技术作为一种新型技术,具有安全高效、方便灵活、环境友好等特点,正受到越来越多的关注。电化学消毒在无集中供水地区的安全终端饮用水供应、小规模应急消毒处理、生态设施中水回用等需求场景上具有广阔的应用前景。

参考文献 (44)

返回顶部

目录

/

返回文章
返回