A2O与人工湿地组合工艺处理长三角平原地区农村生活污水的效果

夏斌, 盛晓琳, 许枫, 施君源, 黄召伟, 刘锐. A2O与人工湿地组合工艺处理长三角平原地区农村生活污水的效果[J]. 环境工程学报, 2021, 15(1): 181-192. doi: 10.12030/j.cjee.202002103
引用本文: 夏斌, 盛晓琳, 许枫, 施君源, 黄召伟, 刘锐. A2O与人工湿地组合工艺处理长三角平原地区农村生活污水的效果[J]. 环境工程学报, 2021, 15(1): 181-192. doi: 10.12030/j.cjee.202002103
XIA Bin, SHENG Xiaolin, XU Feng, SHI Junyuan, HUANG Zhaowei, LIU Rui. Performance of A2O combined with constructed wetland on treating rural domestic sewage in plain areas of Yangtze River delta region, China[J]. Chinese Journal of Environmental Engineering, 2021, 15(1): 181-192. doi: 10.12030/j.cjee.202002103
Citation: XIA Bin, SHENG Xiaolin, XU Feng, SHI Junyuan, HUANG Zhaowei, LIU Rui. Performance of A2O combined with constructed wetland on treating rural domestic sewage in plain areas of Yangtze River delta region, China[J]. Chinese Journal of Environmental Engineering, 2021, 15(1): 181-192. doi: 10.12030/j.cjee.202002103

A2O与人工湿地组合工艺处理长三角平原地区农村生活污水的效果

    作者简介: 夏斌(1994—),男,硕士研究生。研究方向:水污染控制工程。E-mail:813278284@qq.com
    通讯作者: 刘锐(1973—),女,博士,研究员。研究方向:水污染控制工程。E-mail:1393612924@qq.com
  • 基金项目:
    国家水体污染控制与治理科技重大专项(2017ZX07206-004)
  • 中图分类号: X523

Performance of A2O combined with constructed wetland on treating rural domestic sewage in plain areas of Yangtze River delta region, China

    Corresponding author: LIU Rui, 1393612924@qq.com
  • 摘要: 对嘉兴海宁的28座A2O+水平流人工湿地(horizontal flow constructed wetland,HFCWs)和46座A2O+垂直流人工湿地(vertical flow constructed wetland,VFCWs)进行采样,测试了进出水COD、NH3-N、TN、TP和SS,评价了出水稳定性及稳定达标率,比较研究了2种组合工艺对农村生活污水的处理效果及设计和运行问题。结果表明:A2O+VFCWs的出水稳定达标率高于A2O+HFCWs;A2O+VFCWs的出水水质稳定性在冬季较好,但在夏季较差。A2O+VFCWs组合工艺对COD、NH3-N、TN和TP的平均去除率,在冬季为(82.0±18.5)%、(94.8±8.8)%、(49.3±16.8)%和(50.9±16.8)%,在夏季为(72.5±13.2)%、(80.0±16.9)%、(30.0±17.8)%和(30.7±18.9)%,对污染物去除起主要作用的单元是VFCWs。而A2O+HFCWs组合工艺,对COD、NH3-N、TN和TP的平均去除率在冬季为(59.3±21.4)%、(79.1±19.9)%、(42.3±17.3)%和(25.0±10.2)%,在夏季为(62.2±18.0)%、(58.1±30.8)%、(40.6±20.0)%和(28.9±15.7)%,对污染物去除起主要作用的单元是A2O。A2O+VFCWs的A2O单元对TN和TP的平均去除率,在冬季为(20.7±16.3)%和(15.6±10.2)%,在夏季为(20.4±11.9)%和(12.6±13.9)%,而A2O+HFCWs的A2O单元对TN和TP的平均去除率,在冬季为(33.2±16.3)%和(25.0±10.2)%,在夏季为(31.3±24.1)%和(21.9±17.4)%,2种组合工艺中的A2O单元去除效果均不理想,可能与进水碳氮比太低,且排泥少有关。A2O+VFCWs的 A2O单元对各污染物去除率明显低于A2O+HFCWs,主要原因是有效容积偏小且溶解氧控制不够。A2O+VFCWs的VFCWs单元对COD、NH3-N、TN和TP的平均去除率,在冬季为(58.8±25.4)%、(61.4±24.4)%、(22.7±8.5)%和(27.4±21.2)%,比HFCWs分别高出16.0%、36.9%、1.3%和9.5%,在夏季为(59.9±25.0)%、(71.6±26.5)%、(38.3±32.8)%和(39.2±32.9)%,比HFCWs高出28.8%、52.6%、10.5%和5.0%,这主要得益于VFCWs较低的设计水力负荷和较低的出水口位置。综合上述结果,建议该县级市从结构和运行2方面着手进行提升改造。
  • 氮及其化合物会污染地表水体,还会经微生物作用转化为硝酸盐氮积累在土壤中造成地下水污染[1],已成为水体污染治理中的重要污染物。因此,寻求高效、低耗的脱氮技术成为国内外水处理领域亟待解决的重要课题。相较于离子交换、膜分离、化学还原等物理化学手段,生物脱氮具有高效低耗、稳定运行等优点,并已被广泛应用于实际污水处理中[2]。由于反硝化过程中微生物所需碳源种类不同,可将反硝化过程分为异养反硝化和自养反硝化两大类[3]。常见的自养反硝化过程包括氢自养反硝化、硫自养反硝化[2]、铁自养反硝化[4]等。有研究表明,在厌氧条件下甲烷能直接作为碳源及电子供体发生反硝化脱氮[5],这一过程被称为厌氧甲烷氧化的反硝化(denitrifying anaerobic methane oxidation, DAMO)。与其他电子供体相比,甲烷获得途径广泛、无毒且经济便宜[6]。同时,甲烷是温室气体,所产生的温室效应是等质量二氧化碳的26倍,对全球变暖的贡献率约占20%[7]。因此,厌氧甲烷氧化与自养反硝化的耦合反应将人为产生的甲烷用于废水反硝化脱氮处理,可为低物耗废水处理和节能减排提供新思路。

    由于DAMO微生物为自养型微生物,生长缓慢,富集培养比较困难,故基于此类微生物的生物膜反应器研究较少。因此本研究拟采用序批实验,利用人工模拟低氮负荷废水,比较不同环境因素对DAMO系统中间产物的积累与脱氮效果的影响,并通过高通量测序技术,探究不同pH作用下的污泥中微生物的生态分布、群落结构组成和演替变化规律,以揭示系统pH对DAMO功能微生物种群分布及变迁情况的影响,以期为甲烷厌氧氧化的自养反硝化系统的pH调控及条件优化提供参考。

    本研究通过序批实验考察CH4供应、初始硝氮质量浓度和溶液pH对厌氧甲烷氧化型自养反硝化性能的影响。将经过前期培养的50 mL污泥接种至具塞摇瓶(250 mL)内,再加入150 mL模拟硝酸盐废水,调节溶液pH;每日向具塞摇瓶内以0.01 MPa压力注入足量甲烷;为避免光照影响,用双层锡箔纸包住瓶身以保证反应在黑暗环境下进行;将摇瓶置于恒温振荡培养箱中进行反应,调节温度为(30±1) ℃,转速为(150±5) r·min−1;定时检测溶液中NO3-N、NO2-N和NH+4-N的质量浓度。

    本实验采用的接种种泥取自武汉市沙湖污水处理厂二沉池,污泥的初始MLSS约为8 900 mg·L−1。实验开始前,将取回的活性污泥放置在5 L的密闭容器内进行为期30 d的培养驯化。在污泥驯化期间,向容器中加入模拟硝酸盐废水([NO3-N]=20 mg·L−1)以促进微生物的增殖,并每天更换新鲜模拟硝酸盐废水。此外,向上述容器中通15 min氮气以形成厌氧氛围,然后再通入足量甲烷气体,以达到对污泥培养驯化的目的。将经驯化后能够发生基于甲烷厌氧氧化的反硝化作用的污泥用于后续实验。模拟硝酸盐废水的具体成分及质量浓度为:NO3-N 20~50 mg·L−1,K2HPO4 25 mg·L−1,KH2PO4 20 mg·L−1,CaCl2 10 mg·L−1,NaHCO3 2 000 mg·L−1。添加微量元素液的体积分数为0.5 mL·L−1,调节pH至7.3~7.5。微量元素液的成分及质量浓度为:ZnSO4·7H2O 0.5 g·L−1,CaCl2 2 g·L−1,MnCl2·4H2O 2.5 g·L−1,Na2MoO4·4H2O 0.5 g·L−1,KI 0.18 g·L−1,CuSO4·5H2O 0.1 g·L−1,CoCl2·6H2O 0.15 g·L−1,FeCl3·6H2O 1.5 g·L−1

    水质指标的检测方法依照国家环保总局编制的《水与废水监测分析方法(第4版)》,以及美国公共卫生协会编写的《Standard Methods for the Examination of Water and Wastewater》(第十九版)中的标准方法检测。其中,[NO3-N]采用紫外分光光度法测试,[NO2-N]采用N-(1-萘基)-乙二胺分光光度法测试,[NH+4-N]用纳氏试剂分光光度法测试。采用SPSS 23.0进行方差分析(ANOVA),以确定数据集之间是否存在差异,如果p<0.05,则认为存在显著差异。

    为探究环境pH对甲烷厌氧氧化耦合自养反硝化微生物的多样性和种群群落结构变化的影响,分别取pH为6、7、8、9时的污泥样品进行高通量测序,测序结果分别标记为P1、P2、P3和P4。本实验中,高通量测序在上海美吉生物医药科技有限公司进行,利用Illumina Miseq平台,以515F(5′-GTGCCAGCMGCCGCGG-3′)与907R(5′-CCGTCAATTCMTTTRAGTTT-3′)作为引物进行PCR扩增与焦磷酸测序。

    为探究甲烷在自养反硝化体系中的作用,分别向S1、S2系统中通入氮气和甲烷,将pH调至7.5,并检测系统的反硝化速率(见图1),未检测到NO2-N和NH+4-N的积累。由图1可知,通入氮气时(S1),NO3-N含量基本保持不变,几乎没有降解;而在充足甲烷的供应下(S2),6 d内NO3-N基本完全降解,平均脱氮速率为3.67 mg·(L·d)−1。这说明甲烷供应是反硝化过程中的重要条件,也证明了经前期培养驯化的污泥能发生基于甲烷厌氧氧化的反硝化作用。

    图 1  甲烷供应对反硝化速率的影响
    Figure 1.  Effect of methane supply on denitrification rate

    将摇瓶内溶液pH保持在7.5,供以充足的甲烷气体,初始NO3-N质量浓度分别设为20、30、40和50 mg·L−1,探究不同NO3-N质量浓度对反硝化速率的影响,实验结果如图2所示。由图2可知,整个过程几乎没有NH+4-N的积累,NH+4-N质量均维持在0.3 mg·L−1以下。当初始硝氮浓度从20 mg·L−1增加至30 mg·L−1时,平均去除速率也从3.33 mg·(L·d)−1增加至4.28 mg·(L·d)−1 (p<0.05)。这表明在一定范围内,随着初始NO3-N质量浓度的增加,脱氮速率呈上升趋势。这可能是由于:一方面增加了氮源,有利于微生物的增长繁殖;另一方面,在甲烷厌氧氧化耦合自养反硝化过程中,NO3-N经过一系列还原酶的作用被转化成N2,同时还有O2生成,而甲烷在甲烷氧化菌的作用下被O2氧化成甲醇,最终氧化为CO2[8]NO3-N质量分数的增加有可能促进了O2的生成,加快了甲烷被氧化成甲醇的速率,而甲醇又可以为NO3-N及NO2-N的还原提供电子,最终导致脱氮速率的提升。此外,自养反硝化菌的一系列脱氮过程属于酶促反应,底物浓度是影响酶促反应速率的重要因素,在系统中底物浓度较低的情况下,酶促反应的速率会随着底物浓度的增加而提高。然而,当系统中底物浓度增大到一定值时,酶促反应速率便不再提升。当初始NO3-N质量浓度增至40和50 mg·L−1时,平均反硝化速率有所降低,分别为4和3.85 mg·(L·d)−1。这说明过高的NO3-N质量浓度抑制了自养反硝化菌的活性[9]。由于系统中底物浓度过高会抑制酶促反应,从而导致系统脱氮速率的降低。

    图 2  初始NO3--N质量浓度对反硝化过程的影响
    Figure 2.  The effect of initial nitrate concentration on the denitrification process

    图2 (b)可知,NO2-N质量浓度整体都呈现先增加后减小的趋势。这说明在甲烷厌氧氧化反硝化反应中存在NO2-N的积累及进一步的还原过程。当初始NO3-N质量浓度从20 mg·L−1增至50 mg·L−1时,NO2-N积累量峰值从0.27 mg·L−1增至2.69 mg·L−1。由此可见,当NO3-N质量浓度增加时,NO2-N的积累量也逐渐增加,而中间产物的不断积累也会影响反硝化效果,这也是导致脱氮速率有所下降的原因之一。

    为探究初始pH对反硝化速率的影响,将初始NO3-N质量浓度控制在30 mg·L−1,分别调节系统pH为6、7、8、9,研究在不同pH下系统脱氮速率的变化,结果如图3所示。实验过程中几乎没有NH+4-N的积累,NH+4-N质量浓度均在0.3 mg·L−1以下。由图3 (a)可知,4个反应器均能在一定时间内将NH+4-N降解完全。当初始pH为7时,系统对NH+4-N的平均去除速率最高,为5.45 mg·(L·d)−1;当pH增大至8时,反应器平均脱氮速率虽有所下降,但仍保持在5 mg·(L·d)−1左右。然而,当pH继续升至9时,NO3-N平均去除速率降至4.28 mg·(L·d)−1;当pH为6时,反应器的平均脱氮速率最低,仅为4 mg·(L·d)−1。不同pH条件下的脱氮速率之间均存在显著差异(p<0.05)。由此可见,反应器在中性和微碱性环境中能保持良好的脱氮速率,过高或过低的pH都会影响反应器对NO3-N的去除效果。在HE等[10]的研究中,厌氧甲烷氧化反硝化菌在pH为7.0~8.0时保持较高活性,在高pH(pH=9)及低pH(pH=6)时,其活性均会下降,pH=6时其活性最低。这与本实验的结论相似。

    图 3  初始pH对反硝化过程的影响
    Figure 3.  The effect of initial pH on the denitrification process

    由于甲烷厌氧氧化的自养反硝化主要靠微生物的反硝化作用来实现,而各种微生物都有其生存适宜的pH范围,故当环境pH偏离适宜pH过多时,微生物的生长和繁殖就会受到影响,甚至死亡。环境中的pH主要通过3个方面限制微生物的反硝化过程。一是影响微生物胞外水解酶的活性并引起细胞膜上蛋白质的变性,从而影响微生物对物质的降解和吸收;二是通过影响膜的通透性并引起膜表面电荷性质的变化,进一步抑制细胞对物质的分解和吸收;三是影响营养物质的降解和吸收。其中,反硝化过程又由一系列的酶促反应组成,环境pH的变化会影响酶的离子化程度,改变蛋白质结构,从而影响酶的活性。当环境pH过高或过低时,酶也会失去活性[11]。因此,当pH为7~8时,系统反硝化速率良好,差别不大,但随着环境的初始pH增大到9或者减小至6时,反应器的平均脱氮效率也会随之下降。

    图3 (b)可知,系统初始pH对甲烷厌氧氧化的自养反硝化过程中亚硝氮的积累也会产生一定程度的影响。当pH为7和8时,系统NO2-N积累量较低;但随着pH升高至9时,NO2-N积累量也随之增加;而当pH减小至6时,反应过程中NO2-N质量浓度的峰值也较高。这可能是由于:在反应过程中,亚硝酸盐还原酶有迟缓期,而迟缓期的长短由驯化时间的长短和反应条件决定,如pH和营养物质浓度等,因此,不适宜的环境pH(pH<7或pH>8)会延长亚硝酸盐还原酶的迟缓期,从而造成NO2-N的积累[12]。另外,虽然系统处于酸性环境中的平均反硝化速率最低,但pH为6时NO2-N的积累量却比pH为9时要少。这可能是由于:NO3-N首先在硝酸盐还原酶的作用下被还原成NO2-N,然后在亚硝酸盐还原酶的作用下进一步被还原、降解。有研究表明,亚硝酸盐还原酶在中性和微碱性环境中活性最高,但在酸性环境中反应器的平均脱氮速率下降幅度比碱性环境中更大。因此,当初始pH为6的时候,由于系统反硝化效率低,并没有过多的NO3-N被还原成NO2-N。尽管此时亚硝酸盐还原酶活性较低,但由于NO2-N含量的减少,也使得反应器中没有过多的NO2-N积累。

    对初始pH分别为6、7、8、9的摇瓶内污泥取样后进行高通量测序,分析其微生物种群多样性和群落结构。反映系统微生物种群丰度和多样性的各种指标可由样品的Alpha多样性分析得出,见表1。由表1可知,当相似度为97%时,4个样品中分别获得49 400、48 248、55 726和46 796条有效序列(Reads)。4个样品的Coverage值均大于0.99,这表明样品测序得到的序列可覆盖大部分的区域,测序深度能较好地代表4个样品中的微生物群落,结果可有效反映样品的真实状况。

    表 1  不同pH下微生物Alpha多样性指数表
    Table 1.  Microbial Alpha diversity index at different pH values
    样品编号ReadsOTUsAceChaoShannonSimpsonShannonevenSimpsonevenCoverage
    P149 4007388698813.860.063 50.584 00.065 090.997
    P248 2489521 0771 0824.500.060 70.656 40.044 790.996
    P355 7269651 0761 0874.840.023 10.704 30.021 350.997
    P446 7968801 0171 0164.900.017 50.723 40.017 300.996
     | Show Table
    DownLoad: CSV

    Ace和Chao指数可用来估计物种的丰度,数值越大说明微生物的丰度越高,微生物数目也就越多。由表1可知,这2组数据呈现相同的变化趋势,大小顺序均为P2≈P3>P4>P1。这表明在pH=7和pH=8的环境下,微生物丰度最高,微生物的数目也最多。然而,随着环境pH的增大或减小,系统内微生物的丰度均有所下降,并且在酸性环境下丰度最低。Shannon和Simpson指数能够代表测序样本的生物多样性,Shannon越大,Simpson越小,表明微生物的多样性越高,因此4个样品按多样性高低排序为P4>P3>P2>P1。Shannoneven与Simpsoneven指数为反映样品均匀度的指标,Shannoneven越大,Simpsoneven越小,表明微生物的均匀度越好。4个样本按均匀度高低排序为P4>P3>P2>P1。

    另外,pH=7和pH=8的反应器微生物丰度最高,多样性及均匀度适中。这主要是由于中性和微碱性环境有利于微生物的生长繁殖,并且对微生物中功能菌的筛选作用强。随着pH的升高,微生物多样性和均匀度也越高,说明碱性环境可提高微生物的多样性和均匀度。

    以上结果与图4中的稀释曲线和等级-丰度曲线所显示的结果相同,4个样品的稀释曲线最后都趋于平缓。这表明此次测序的取样合理,继续增加序列数只会产生少量的OTU,且从曲线中得到4个样品的OTU数目变化趋势与前述相同。等级-丰度曲线可用来表示微生物中物种丰度和物种均匀度2个方面的内容。其中,物种的丰度由水平方向曲线的宽度来反映,曲线在横轴上的范围越大,物种的丰富度就越高;而曲线的形状(平缓程度)反映了样本中群落的均匀度,曲线越平缓,物种分布越均匀。本结果表明,当pH=7和pH=8时,物种丰度较大,均匀度较好。

    图 4  微生物群落多样性
    Figure 4.  Microbial community diversity

    韦恩图可用来统计多个样本中所共有和独有OTU数量,能直观表达不同样品间物种的相似性。由图4 (c)所示,4个样品共获得了1 204个OTU,P1、P2、P3、P4所单独特有的OTU数分别为41、41、55和38,分别占总数的3.4%、3.4%、4.6%和3.2%。而4个样品共有的OTU数目为514,占各样品OTU总数的50%~70%。这说明不同pH下微生物物种的相似性较高,pH的改变并未使系统中微生物的种类发生太大变化。因此,不同条件下微生物仍具备一定的脱氮能力,而环境pH的改变可能引起系统中主要脱氮功能菌丰度的变化,从而导致脱氮效率的不同。

    为进一步揭示pH对微生物群落的影响,分别在门、纲、属水平上分析了4个样品的微生物群落结构。图5显示了门水平的种群分布,4个样品中丰度最多的8个菌门分别是Proteobacteria(变形菌门)、Bacteroidetes(拟杆菌门)、Chloroflexi(绿弯菌门)、Planctomycetes(浮霉菌门)、Latescibacteria(匿杆菌门)、Firmicutes(厚壁菌门)、Acidobacteria(酸杆菌门)和Zixibacteria(河床菌门)。这些菌门总和在4个样品中占90%以上。其中,Proteobacteria在4个样品中所占比例最高,分别为47.58%、45.79%、38.89%和35.96%;其次是Bacteroidetes和Chloroflexi,Bacteroidetes在4个样品中占比分别28.12%、21.33%、22.76%和26.52%,Chloroflexi占比分别为4.73%、10.79%、15.61%和14.49%。钱祝胜等[13]在中空纤维膜反应器内富集的反硝化厌氧甲烷氧化菌群中,占优势的菌门依次为Chloroflexi(绿弯菌门)、Proteobacteria(变形菌门)、Planctomycetes(浮霉菌门)、Chlorobi(绿菌门)、Acidobacteria(酸杆菌门)、Bacteroidetes(拟杆菌门),与本研究中占优势的菌门相似。Proteobacteria和Bacteroidetes一直被认为是反硝化脱氮过程中最常见的自养反硝化微生物,这2种菌门包含各种类型的反硝化菌及甲烷氧化菌[14]图5表明,在4个样品中,这2种菌门所占比例的总和差别不大,即各种pH环境下都具备一定的反硝化脱氮能力。在LUO等[15]构建的以甲烷作为电子供体去除地下水中硝酸盐的生物膜反应器中,Planctomycetes作为主要菌门被检出。Chloroflexi作为厌氧污泥中一种常见的复杂菌门[16],包含了好氧嗜热菌、厌氧光养菌、利用卤化物或有机物的厌氧微生物等多种微生物,并被认为能够参与自养反硝化过程。绿弯菌门细菌能够将多糖、蛋白质等大分子有机物分解为乙酸等低分子有机酸,这些产物又能够被产甲烷菌利用进行产甲烷作用[17-18]。由图5可知,当初始pH从6逐渐升高时,系统内Chloroflexi所占比例也有一定的增长,这表明环境pH对Chloroflexi有较强的选择作用,过酸的环境不利于它的增长繁殖。除以上4种菌门外,Firmicutes和Acidobacteria也被证明具有脱氮基因,具备相应的反硝化能力[19]。除以上所述的主要菌门外,其他如Synergistetes、Gracilibacteria、Gemmatimonadetes、Hydrogenedentes和Cyanobacteria等菌门微生物由于在样品中具有较低的丰度(<1%)而被归为“Other”类,但这些菌种也在系统反硝化脱氮的过程中发挥着作用[20-24]。总的来说,虽然初始pH会影响不同菌门的相对丰度,但系统中同时存在的多种与反硝化相关的微生物还是使得系统具有高效的脱氮性能。

    图 5  门水平微生物相对丰度
    Figure 5.  Relative abundance of microorganisms at phylum level

    图6显示了在纲水平上4个样品的菌群结构。由图6可知,系统中的主要优势菌纲为Gammaproteobacteria、Deltaproteobacteria、Bacterodia、Ignavibacteria、Anaerolineae和Alphaproteobacteria,这些菌纲总和占各个样品总数比例的70%以上。其中Gammaproteobacteria、Deltaproteobacteria和Alphaproteobacteria同属于变形菌门,在此前多项自养反硝化的研究中被证明具有去除硝酸盐的能力[19]。在pH=7和pH=8的环境下,Gammaproteobacteria在样品中所占比例分别为13.22%和12.58%;随着pH的增大或减小,其含量均有一定的增加,在pH=6时占比为26.02%,pH=9时占比为21.29%。而Deltaproteobacteria菌纲的占比随着pH的变化趋势与此相反,在4个样品中所占比例分别为14.44%、26.91%、14.50%和6.65%。这说明这2种菌纲存在一定的竞争关系,中性和弱碱性环境适合Deltaproteobacteria的生长繁殖,从而导致丰度增加,而Gammaproteobacteria适合在酸性和强碱性环境下生长,因此表现出相反的变化趋势。Alphaproteobacteria在4个样品中所占比例分别为7.05%、5.58%、11.77%和7.96%,其中,在初始pH为8时其丰度最高。以上3种菌纲具有反硝化能力,可利用甲烷氧化生成的甲醇将系统中的NO3-N转化成N2;同时,某些菌纲中包含同时在甲烷厌氧氧化和反硝化过程中发挥作用的细菌,如Chitinophagaceae(Alphaproteobacteria菌纲)在甲烷厌氧氧化和反硝化过程中扮演重要角色[25]。同属于拟杆菌门的Bacterodia和Ignavibacteria菌纲也有相似的变化趋势,它们在4个样品中所占比例分别为24.43%、11.79%、9.57%、10.62%和3.12%、9.07%、12.91%、15.83%。由此可见,两者也可能存在一定的竞争关系,酸性条件下更利于Bacterodia的增长繁殖。Anaerolineae是一种典型的自养反硝化菌[26],它在4个样品中的相对丰度分别为4.05%、9.48%、12.83%和13.02%。这说明环境pH的增加有利于该菌纲的富集,在酸性环境下其含量最低,也与前文得出的在酸性环境下系统脱氮效果较差的结果相吻合。

    图 6  纲水平微生物相对丰度
    Figure 6.  Relative abundance of microorganisms at class level

    初始pH的变化会引起系统内微生物在门、纲水平上的丰度变化,从而对微生物的群落结构变化产生了一定影响。为进一步了解环境pH对种群结构的影响,对4个样品中的物种进行了属水平上的分析,并挑选相对丰度最高的50个菌属作热图(图7)。

    图 7  属水平微生物热图
    Figure 7.  Heat map of microorganisms at genus level

    4个样品中的微生物在属水平的分布上也均存在相似性和差异性。具体来说,P1中相对丰度最高的10个菌属及其所占的比例分别为norank_f_Microscillaceae(15.07%)、norank_f__P3OB-42(12.57%)、unclassified_f__Methylophilaceae(10.10%)、Methylotenera(8.85%)、OLB12(7.81%)、Bacillus(3.71%)、norank_c__OM190(3.35%)、norank_c__Latescibacteria(2.94%)、norank_o__SJA-28(2.07%)、Phreatobacter(1.95%);P2中相对丰度最高的10个菌属及其所占的比例分别为norank_f__P3OB-42(24.09%)、norank_c__Latescibacteria(7.18%)、norank_o__SJA-28(6.70%)、OLB12(3.58%)、norank_f_BSV26(3.14%)、norank_f__Anaerolineaceae(2.94%)、norank_o__Bacteroidetes_VC2.1_Bac22 (2.61%)、norank_p__Zixibacteria (2.45%)、norank_f__Caldilineaceae (1.81%)、unclassified_f__Burkholderiaceae (1.77%);P3中相对丰度最高的10个菌属及其所占的比例分别为norank_f__P3OB-42 (9.88%)、norank_o__SJA-28 (7.30%)、Methylocystis (5.79%)、norank_f__Anaerolineaceae (5.12%)、norank_c__Latescibacteria (5.03%)、norank_f__BSV26 (3.19%)、norank_c__OM190(2.39%)、norank_f__Caldilineaceae (2.17%)、Sediminibacterium (2.16%)、norank_p__Zixibacteria (2.12%);P4中相对丰度最高的10个菌属及其所占比例分别为norank_o__SJA-28 (7.08%)、norank_f__BSV26 (6.37%)、norank_f__Anaerolineaceae (5.43%)、norank_c__Latescibacteria (4.13%)、Methylotenera (3.37%)、Ellin6067 (2.87%)、norank_f__SC-I-84 (2.81%)、norank_f__P3OB-42 (2.75%)、norank_f__AKYH767 (2.24%)、norank_o__Bacteroidetes_VC2.1_Bac22 (2.20%)。

    由此可见,随着初始pH的变化,4个样品中微生物群落结构发生了较大变化,主要微生物菌属也有较大差异。其中,Methylocystis在初始pH为8的环境下有明显富集。Methylocystis是常见的甲烷氧化菌II型菌株,能以甲烷作为唯一碳源和能量来源,在大多数含有甲烷和氧气的环境中都被发现。同时,LAI等[27]也在以甲烷作为电子供体同步去除硝酸盐和溴酸盐的系统中发现了Methylocystis的存在,并且认为其在甲烷氧化、硝酸盐及溴酸盐的还原过程中发挥了重要作用。在本系统中,Methylocystis作为甲烷氧化菌,氧化甲烷生成甲醇,甲醇为硝氮及亚硝氮的还原提供电子进行反硝化反应脱氮,其对甲烷氧化及硝酸盐的还原均发挥重要作用。Methylotenera和未分类的Methylophilaceae同属于嗜甲基菌科,能利用甲醇作为碳源和能量来源,使其氧化分解[28]。LONG等[29]在关于甲烷作为电子供体还原六价铬和硝酸盐的研究中也发现了这2种微生物的存在。在初始pH为6的环境中,这2种微生物可得到大量富集。这可能是由于:在内部好氧的亚硝酸盐依赖型厌氧甲烷氧化途径中,酸性条件加快了甲烷被甲烷氧化菌氧化成甲醇的过程,从而使得MethyloteneraMethylophilaceae大量富集。MethyloteneraMethylophilaceae也是甲烷氧化菌,能利用O2将甲烷转化为甲醇。同时,生成的甲醇可用于反硝化脱氮。此外,norank_f__Anaerolineaceae属于Anaerolineaceae科,随着初始pH的增大,相对丰度也有所增加。Anaerolineaceae菌科被证明存在于许多以甲烷为电子供体的自养反硝化体系中[30],同时,这种丝状菌能为微生物的附着提供骨架[31],有利于微生物的生长繁殖。另外,还有诸如norank_o__SJA-28、norank_f__P3OB-42 、norank_c__Latescibacteria等菌属也在4个污泥样品中被检测出来。虽然有研究表明这些菌可在有硝酸盐负荷的环境中存在,但暂时还无法明确其能否参与甲烷厌氧氧化的自养反硝化过程,故还需进一步研究来证明。

    虽然单一菌属的相对丰度随环境初始pH变化的差异较大,但除污性能是由系统内不同菌群、多种功能微生物间的相互协作实现的。不同pH下,污泥样品的微生物种群结构虽有所差别,但其大多具备甲烷氧化或反硝化能力,且不同初始pH下功能菌在整个系统中所占比例仍然较高,这也为甲烷厌氧氧化型反硝化工艺能在较广pH范围内维持可靠的脱氮效率奠定了微生物基础。

    1)在CH4供应充足的情况下,系统具备良好的反硝化速率,且没有NO2-N的积累,而空白组几乎没有还原NO3-N的能力,表明经前期培养驯化的污泥能够以甲烷作为电子供体进行自养反硝化。

    2)随着初始NO3-N质量浓度的升高,系统平均脱氮速率呈现先升高后下降的趋势,表明在一定范围内增加NO3-N质量浓度可提高系统反硝化速率,平均脱氮速率最高可达到4.28 mg·(L·d)−1;反应器内出现不同程度的NO2-N积累,当初始NO3-N质量浓度为50 mg·L−1时,NO2-N积累量达到峰值,为2.69 mg·L−1

    3)系统在不同pH环境下均具备一定的脱氮能力,而反硝化速率有所差异。在中性和弱碱性环境下,系统脱氮效果最优,脱氮速率最高可达5.45 mg·(L·d)−1。此时,NO2-N积累量最少,峰值仅为1.07 mg·L−1。当系统初始pH增大或减小,平均脱氮速率都会有所下降,且NO2-N积累量明显增加。

    4)由微生物菌群分析结果可知,环境pH对微生物种群结构具有选择作用。在pH=7和pH=8时,系统内厌氧污泥微生物的丰度最高,物种多样性和均匀性适中;不同pH下,厌氧污泥内微生物群落的主要菌门为Proteobacteria和Bacteroidetes,在纲水平上,Gammaproteobacteria、Deltaproteobacteria、Bacterodia、Ignavibacteria和Anaerolineae为优势菌纲。在适宜的pH(pH=8)下,常见甲烷氧化菌Methylocystis大量富集。不同pH环境下均存在常见于许多以甲烷为电子供体的自养反硝化体系中的Anaerolineaceae,其具体功能有待进一步探究。

  • 图 1  2种组合工艺流程图

    Figure 1.  Flow chart of two combination processes

    图 2  稳定达标率、稳定达标率系数与不同变异系数的关系

    Figure 2.  Dependence of the standard compliance rate and the coefficient of the standard compliance rate on the variation coefficient

    图 3  2种组合工艺在冬夏两季的出水标准差系数

    Figure 3.  Standard deviation coefficients of effluents from the two combined processes in winter and summer

    图 4  2种组合工艺的A2O与人工湿地单元在冬夏两季的污染物去除占比

    Figure 4.  Pollutant removal ratio of A2O and constructed wetland units in the two combined processes in winter and summer

    图 5  2种组合工艺的A2O单元在冬夏两季对各污染物的去除效率

    Figure 5.  Pollutant removal of A2O units in the two combined processes in winter and summer

    图 6  2种组合工艺的人工湿地单元在冬夏两季对各污染物的去除率

    Figure 6.  Pollutant removal of constructed wetlands units in the two combined technologies in winter and summer

    表 1  2种组合工艺的冬季和夏季水质

    Table 1.  Water quality of the two combined processes in winter and summer

    季节工艺类型抽检设施/座沿程水质NH3-N/(mg∙L−1)TN/(mg∙L−1)TP/(mg∙L−1)COD/(mg∙L−1)SS/(mg∙L−1)
    冬季A2O+HFCWs16A2O进水28.4±14.138.4±19.12.7±1.240.7±29.615.4±15.0
    A2O出水13.6±12.226.0±12.82.3±1.130.2±26.316.6±23.2
    湿地出水6.8±7.520.4±9.12.0±0.916.1±9.29.6±19.0
    A2O+VFCWs8A2O进水36.2±27.146.6±28.83.7±2.845.8±44.2107.4±189.7
    A2O出水31.4±26.940.0±24.23.2±2.244.1±41.516.1±24.0
    湿地出水4.0±3.133.1±21.41.9±0.912.8±2.913.1±17.3
    夏季A2O+HFCWs29A2O进水45.2±17.353.4±18.65.1±1.8144.8±64.394.0±44.4
    A2O出水25.1±20.641.3±20.04.3±1.664.7133.833.4±16.0
    湿地出水24.0±19.035.7±19.33.8±1.553.0±29.527.0±19.4
    A2O+VFCWs21A2O进水38.2±27.346.6±27.04.9±2.9102.8±84.268.9±61.2
    A2O出水32.1±26.240.9±36.44.3±2.799.5±132.949.3±43.5
    湿地出水11.3±17.036.4±21.53.9±2.528.0±24.317.8±17.6
    季节工艺类型抽检设施/座沿程水质NH3-N/(mg∙L−1)TN/(mg∙L−1)TP/(mg∙L−1)COD/(mg∙L−1)SS/(mg∙L−1)
    冬季A2O+HFCWs16A2O进水28.4±14.138.4±19.12.7±1.240.7±29.615.4±15.0
    A2O出水13.6±12.226.0±12.82.3±1.130.2±26.316.6±23.2
    湿地出水6.8±7.520.4±9.12.0±0.916.1±9.29.6±19.0
    A2O+VFCWs8A2O进水36.2±27.146.6±28.83.7±2.845.8±44.2107.4±189.7
    A2O出水31.4±26.940.0±24.23.2±2.244.1±41.516.1±24.0
    湿地出水4.0±3.133.1±21.41.9±0.912.8±2.913.1±17.3
    夏季A2O+HFCWs29A2O进水45.2±17.353.4±18.65.1±1.8144.8±64.394.0±44.4
    A2O出水25.1±20.641.3±20.04.3±1.664.7133.833.4±16.0
    湿地出水24.0±19.035.7±19.33.8±1.553.0±29.527.0±19.4
    A2O+VFCWs21A2O进水38.2±27.346.6±27.04.9±2.9102.8±84.268.9±61.2
    A2O出水32.1±26.240.9±36.44.3±2.799.5±132.949.3±43.5
    湿地出水11.3±17.036.4±21.53.9±2.528.0±24.317.8±17.6
    下载: 导出CSV

    表 2  2种组合工艺出水在冬夏两季的稳定达标率与偏差系数

    Table 2.  Stable compliance rates and deviation coefficients of effluents from the two combined processes in winter and summer

    季节工艺名称稳定达标率/%偏差系数
    NH3-NTPCODSSNH3-NTPCODSS
    冬季A2O+VFCWs99.988.710093.8−1.02−1.21−0.82−0.77
    A2O+HFCWs97.286.510090.8−1.01−1.48−0.75−0.77
    夏季A2O+VFCWs89.844.598.185.3−1.151.13−1.09−1.12
    A2O+HFCWs66.332.393.158.00.281.16−1.270.37
    季节工艺名称稳定达标率/%偏差系数
    NH3-NTPCODSSNH3-NTPCODSS
    冬季A2O+VFCWs99.988.710093.8−1.02−1.21−0.82−0.77
    A2O+HFCWs97.286.510090.8−1.01−1.48−0.75−0.77
    夏季A2O+VFCWs89.844.598.185.3−1.151.13−1.09−1.12
    A2O+HFCWs66.332.393.158.00.281.16−1.270.37
    下载: 导出CSV
  • [1] DRIZO A, FROST C A, GRACE J, et al. Physico-chemical screening of phosphate-removing substrates for use in constructed wetland systems[J]. Water Research, 1999, 33(17): 3595-3602. doi: 10.1016/S0043-1354(99)00082-2
    [2] 桂双林, 王顺发, 吴永明, 等. 生物滤塔-人工湿地组合工艺对农村生活污水净化效果研究[J]. 环境工程学报, 2011, 5(10): 2312-2314.
    [3] 黄锦楼, 陈琴, 许连煌. 人工湿地在应用中存在的问题及解决措施[J]. 环境科学, 2013, 34(1): 401-408.
    [4] 匡武, 王翔宇, 周其胤, 等. 提高低C/N值农村生活污水中TN的去除效果[J]. 环境工程学报, 2015, 9(9): 4252-4258. doi: 10.12030/j.cjee.20150926
    [5] 孟红, 李传松, 周健, 等. C/N值对序批式深床反硝化人工湿地脱氮的影响[J]. 中国给水排水, 2016, 32(13): 1-5.
    [6] YU G, PENG H, FU Y, et al. Enhanced nitrogen removal of low c/n wastewater in constructed wetlands with co-immobilizing solid carbon source and denitrifying bacteria[J]. Bioresource Technology, 2019, 280: 337-344. doi: 10.1016/j.biortech.2019.02.043
    [7] 王宁宁, 赵阳国, 孙文丽, 等. 溶解氧含量对人工湿地去除污染物效果的影响[J]. 中国海洋大学学报(自然科学版), 2018, 48(6): 24-30.
    [8] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002.
    [9] NIKU S, SCHROEDER E D, SAMANIEGO F J. Performance of activated sludge processes and reliability-based design[J]. Journal (Water Pollution Control Federation), 1979, 51(12): 2841-2857.
    [10] 苏魏, 杜鹏飞, 陈吉宁. 城市污水处理厂运行稳定性评估方法初探[J]. 环境污染治理技术与设备, 2005, 6(8): 84-87.
    [11] 何雪梅, 吴义锋. 统计模型在污水处理厂试运行评价中的应用[J]. 工程与建设, 2006, 20(5): 521-523. doi: 10.3969/j.issn.1673-5781.2006.05.047
    [12] 安芳娇, 赵智超, 黄利, 等. HRT对厌氧氨氧化协同异养反硝化脱氮的影响[J]. 环境科学, 2018, 39(9): 4302-4309.
    [13] 周慧芳, 刘正辉, 李德豪, 等. 一体化OCO工艺脱氮除磷效果优化的ORP调控策略[J]. 环境科学与技术, 2017, 40(6): 61-65.
    [14] 侯京卫, 范彬, 曲波, 等. 农村生活污水排放特征研究述评[J]. 安徽农业科学, 2012, 40(2): 964-967. doi: 10.3969/j.issn.0517-6611.2012.02.129
    [15] 宋小燕, 刘锐, 董宝刚, 等. 低温条件IASBR处理养猪沼液脱氮性能研究[J]. 环境科学学报, 2017, 37(3): 1013-1020.
    [16] 王亚宜, 彭永臻, 王淑莹, 等. 碳源和硝态氮浓度对反硝化聚磷的影响及ORP的变化规律[J]. 环境科学, 2004, 25(4): 54-58. doi: 10.3321/j.issn:0250-3301.2004.04.011
    [17] ÁVILA C, MATAMOROS V, REYES-CONTRERAS C, et al. Attenuation of emerging organic contaminants in a hybrid constructed wetland system under different hydraulic loading rates and their associated toxicological effects in wastewater[J]. Science of the Total Environment, 2014, 470-47: 1272-1280.
    [18] DECEZARO S T, WOLFF D B, PELISSARI C, et al. Influence of hydraulic loading rate and recirculation on oxygen transfer in a vertical flow constructed wetland[J]. Science of the Total Environment, 2019, 668: 988-995. doi: 10.1016/j.scitotenv.2019.03.057
    [19] 王鹏, 董仁杰, 吴树彪, 等. 水力负荷对潜流湿地净化效果和氧环境的影响[J]. 水处理技术, 2009, 35(12): 48-52.
    [20] LU S, GAO X, WU P, et al. Assessment of the treatment of domestic sewage by a vertical-flow artificial wetland at different operating water levels[J]. Journal of Cleaner Production, 2019, 208: 649-655. doi: 10.1016/j.jclepro.2018.10.111
    [21] 刘国臣, 王福浩, 梁家成, 等. 不同水位垂直流人工湿地中植物及微生物特征[J]. 中国海洋大学学报(自然科学版), 2019, 49(2): 98-105.
    [22] 马剑敏, 张永静, 马顷, 等. 曝气对两种人工湿地污水净化效果的影响[J]. 环境工程学报, 2011, 5(2): 315-321.
    [23] 赵军, 薛宇, 李晓东, 等. 复合人工湿地去除生活污水中的有机物和氮[J]. 环境工程学报, 2013, 7(1): 26-30.
    [24] 王凯军, 陈世朋, 董娜, 等. 微型复合垂直流人工湿地处理农村灰水试验研究[J]. 中国给水排水, 2008, 24(17): 40-43. doi: 10.3321/j.issn:1000-4602.2008.17.011
    [25] 龙翠芬, 郑离妮, 唐晓丹, 等. 农户庭院型人工湿地对农村生活污水的净化效果[J]. 环境工程学报, 2012, 6(8): 2560-2564.
    [26] 丁怡, 王玮, 王宇晖, 等. 不同进水碳氮比对水平潜流人工湿地脱氮效果的影响[J]. 工业水处理, 2014, 34(10): 29-32. doi: 10.11894/1005-829x.2014.34(10).029
    [27] WANG R, ZHAO X, LIU H, et al. Elucidating the impact of influent pollutant loadings on pollutants removal in agricultural waste-based constructed wetlands treating low C/N wastewater[J]. Bioresource Technology, 2019, 273: 529-537. doi: 10.1016/j.biortech.2018.11.044
    [28] 夏艳阳, 崔理华, 黄小龙. 污水碳源对复合垂直流-水平流人工湿地脱氮效果的影响[J]. 环境工程学报, 2017, 11(1): 638-644. doi: 10.12030/j.cjee.201509223
    [29] 李海波, 杨瑞崧, 李晓东, 等. 水淬渣人工湿地强化除磷作用研究[J]. 环境科学, 2009, 30(8): 2302-2308. doi: 10.3321/j.issn:0250-3301.2009.08.021
    [30] 李林锋, 年跃刚, 蒋高明. 植物吸收在人工湿地脱氮除磷中的贡献[J]. 环境科学研究, 2009, 22(3): 337-342.
    [31] 汤显强, 李金中, 刘学功, 等. 人工湿地填料磷去除效果的影响因素分析[J]. 农业环境科学学报, 2008, 27(2): 748-752. doi: 10.3321/j.issn:1672-2043.2008.02.063
    [32] 袁东海, 景丽洁, 高士祥, 等. 几种人工湿地基质净化磷素污染性能的分析[J]. 环境科学, 2005, 26(1): 51-55. doi: 10.3321/j.issn:0250-3301.2005.01.012
    [33] ZHENG X, JIN M, ZHOU X, et al. Enhanced removal mechanism of iron carbon micro-electrolysis constructed wetland on C, N, and P in salty permitted effluent of wastewater treatment plant[J]. Science of the Total Environment, 2019, 649: 21-30. doi: 10.1016/j.scitotenv.2018.08.195
    [34] GE Z, WEI D, ZHANG J, et al. Natural pyrite to enhance simultaneous long-term nitrogen and phosphorus removal in constructed wetland: Three years of pilot study[J]. Water Research, 2019, 148: 153-161. doi: 10.1016/j.watres.2018.10.037
  • 加载中
    Created with Highcharts 5.0.7访问量Chart context menu近一年内文章摘要浏览量、全文浏览量、PDF下载量统计信息摘要浏览量全文浏览量PDF下载量2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问类别分布DOWNLOAD: 8.5 %DOWNLOAD: 8.5 %HTML全文: 84.9 %HTML全文: 84.9 %摘要: 6.6 %摘要: 6.6 %DOWNLOADHTML全文摘要Highcharts.com
    Created with Highcharts 5.0.7Chart context menu访问地区分布其他: 99.7 %其他: 99.7 %XX: 0.1 %XX: 0.1 %北京: 0.1 %北京: 0.1 %扬州: 0.1 %扬州: 0.1 %其他XX北京扬州Highcharts.com
图( 6) 表( 2)
计量
  • 文章访问数:  4831
  • HTML全文浏览数:  4831
  • PDF下载数:  104
  • 施引文献:  0
出版历程
  • 收稿日期:  2020-02-19
  • 录用日期:  2020-05-09
  • 刊出日期:  2021-01-10
夏斌, 盛晓琳, 许枫, 施君源, 黄召伟, 刘锐. A2O与人工湿地组合工艺处理长三角平原地区农村生活污水的效果[J]. 环境工程学报, 2021, 15(1): 181-192. doi: 10.12030/j.cjee.202002103
引用本文: 夏斌, 盛晓琳, 许枫, 施君源, 黄召伟, 刘锐. A2O与人工湿地组合工艺处理长三角平原地区农村生活污水的效果[J]. 环境工程学报, 2021, 15(1): 181-192. doi: 10.12030/j.cjee.202002103
XIA Bin, SHENG Xiaolin, XU Feng, SHI Junyuan, HUANG Zhaowei, LIU Rui. Performance of A2O combined with constructed wetland on treating rural domestic sewage in plain areas of Yangtze River delta region, China[J]. Chinese Journal of Environmental Engineering, 2021, 15(1): 181-192. doi: 10.12030/j.cjee.202002103
Citation: XIA Bin, SHENG Xiaolin, XU Feng, SHI Junyuan, HUANG Zhaowei, LIU Rui. Performance of A2O combined with constructed wetland on treating rural domestic sewage in plain areas of Yangtze River delta region, China[J]. Chinese Journal of Environmental Engineering, 2021, 15(1): 181-192. doi: 10.12030/j.cjee.202002103

A2O与人工湿地组合工艺处理长三角平原地区农村生活污水的效果

    通讯作者: 刘锐(1973—),女,博士,研究员。研究方向:水污染控制工程。E-mail:1393612924@qq.com
    作者简介: 夏斌(1994—),男,硕士研究生。研究方向:水污染控制工程。E-mail:813278284@qq.com
  • 1. 上海师范大学环境与地理科学学院,上海 200030
  • 2. 浙江清华长三角研究院生态环境研究所,浙江省水质科学与技术重点实验室,嘉兴 314006
  • 3. 嘉兴市住房和城乡建设局,嘉兴 314000
基金项目:
国家水体污染控制与治理科技重大专项(2017ZX07206-004)

摘要: 对嘉兴海宁的28座A2O+水平流人工湿地(horizontal flow constructed wetland,HFCWs)和46座A2O+垂直流人工湿地(vertical flow constructed wetland,VFCWs)进行采样,测试了进出水COD、NH3-N、TN、TP和SS,评价了出水稳定性及稳定达标率,比较研究了2种组合工艺对农村生活污水的处理效果及设计和运行问题。结果表明:A2O+VFCWs的出水稳定达标率高于A2O+HFCWs;A2O+VFCWs的出水水质稳定性在冬季较好,但在夏季较差。A2O+VFCWs组合工艺对COD、NH3-N、TN和TP的平均去除率,在冬季为(82.0±18.5)%、(94.8±8.8)%、(49.3±16.8)%和(50.9±16.8)%,在夏季为(72.5±13.2)%、(80.0±16.9)%、(30.0±17.8)%和(30.7±18.9)%,对污染物去除起主要作用的单元是VFCWs。而A2O+HFCWs组合工艺,对COD、NH3-N、TN和TP的平均去除率在冬季为(59.3±21.4)%、(79.1±19.9)%、(42.3±17.3)%和(25.0±10.2)%,在夏季为(62.2±18.0)%、(58.1±30.8)%、(40.6±20.0)%和(28.9±15.7)%,对污染物去除起主要作用的单元是A2O。A2O+VFCWs的A2O单元对TN和TP的平均去除率,在冬季为(20.7±16.3)%和(15.6±10.2)%,在夏季为(20.4±11.9)%和(12.6±13.9)%,而A2O+HFCWs的A2O单元对TN和TP的平均去除率,在冬季为(33.2±16.3)%和(25.0±10.2)%,在夏季为(31.3±24.1)%和(21.9±17.4)%,2种组合工艺中的A2O单元去除效果均不理想,可能与进水碳氮比太低,且排泥少有关。A2O+VFCWs的 A2O单元对各污染物去除率明显低于A2O+HFCWs,主要原因是有效容积偏小且溶解氧控制不够。A2O+VFCWs的VFCWs单元对COD、NH3-N、TN和TP的平均去除率,在冬季为(58.8±25.4)%、(61.4±24.4)%、(22.7±8.5)%和(27.4±21.2)%,比HFCWs分别高出16.0%、36.9%、1.3%和9.5%,在夏季为(59.9±25.0)%、(71.6±26.5)%、(38.3±32.8)%和(39.2±32.9)%,比HFCWs高出28.8%、52.6%、10.5%和5.0%,这主要得益于VFCWs较低的设计水力负荷和较低的出水口位置。综合上述结果,建议该县级市从结构和运行2方面着手进行提升改造。

English Abstract

  • 人工湿地对污水中的氮、磷污染物有很好的去除效果,而且具有投资成本低、维护管理方便和不产生二次污染等优点[1],在农村生活污水处理领域具有广阔的应用前景。目前,人工湿地在农村生活污水中的应用以潜流式为主,包括水平流人工湿地(horizontal flow constructed wetland,HFCWs)和垂直流人工湿地(vertical flow constructed wetland,VFCWs),设计时通常参考国家环保部发布的《人工湿地污水处理工程技术规范》(HJ 2005—2010)。该规范主要适用于城镇污水厂出水深度处理,HFCWs与VFCWs水力负荷建议取值为0.015~0.5 m3∙(m2∙d)−1和0.2~0.8 m3∙(m2∙d)−1;针对农村水质水量变化大、地区之间差别大的情况,参数取值的适宜性尚需探讨。

    长三角平原地区人口密度高、环境负荷大、土地资源紧缺,且位于太湖流域,环境敏感性高,近年来对农村生活污水治理与达标排放的要求越来越严格,处理工艺也因此由最初的单纯厌氧池或单纯人工湿地系统慢慢演变为生物处理+人工湿地组合工艺。在生物处理+人工湿地组合工艺中,生物处理被认为担任去除有机污染物、悬浮物和脱氮除磷的主要角色,普遍采用在市政污水处理效果较好的A2O (anaerobic-anoxic-oxic)工艺。污水经生物处理后,可降低后续人工湿地单元的进水浓度,在进一步去除氮磷、稳定出水水质的同时,减少湿地的占地面积[2]。农村生活污水的水量和水质受季节、时段的影响变化大[3],设施进水碳氮比低、运行过程中溶解氧控制调整难[4-7],这些因素均将增加A2O和人工湿地在处理农村生活污水中充分硝化和高效脱氮除磷方面的难度,从而影响设施效果的发挥。

    本研究以嘉兴海宁的农村生活污水处理设施为研究对象,实地抽检了11个乡镇内28座A2O与VFCWs组合工艺(A2O+VFCWs)设施和46座A2O与HFCWs组合工艺(A2O+HFCWs)设施,运用统计学方法比较了2种组合工艺处理农村生活污水的出水稳定性及稳定达标率,分析了A2O单元和人工湿地单元对污染物去除的各自贡献率,剖析了2种组合工艺的设计与运行问题,旨在为组合工艺今后脱氮除磷的性能提升提供参考。

  • 在海宁市11个乡镇随机选取74座A2O与人工湿地组合工艺设施,开展现场调研和水质检测(表1),其中冬季和夏季各抽检A2O+VFCWs设施8和21座,A2O+HFCWs设施16和29座,设计处理规模覆盖10~80 t∙d−1。冬季交予第3方运维企业的设施数量为504座,其中,30 t∙d−1以下(包含30 t∙d−1)为401座,超过30 t∙d−1设施数量为103座,夏季交予3方运维企业的设施数量增多,达到了796座,其中30 t∙d−1以下(包含30 t∙d−1)为604座,超过30 t∙d−1设施数量为192座。2个季度调研选取比例均是按照地区处理规模30 t∙d−1以下(包含30 t∙d−1)按5%的比例随机抽取,超过30 t∙d−1按照10%随机抽取。2种组合类型工艺流程如图1所示。

    A2O单元的厌氧池、缺氧池和好氧池中均填充弹性填料,填充率为55%~70%,好氧池后设有二沉池,二沉池的污泥液通过气提泵回流至厌氧池,排泥较少。A2O+HFCWs的A2O单元有效容积随设计处理规模变化而变化,水力停留时间约为24 h;A2O+VFCWs的A2O单元不论设计规模,池容积固定为12 m³,水力停留时间为3.6~14.4 h。2种组合工艺前端A2O池内曝气均采用涡漩风机,设计规模为30 t∙d−1以下的处理设施,曝气量为0.225 m3∙min−1;设计规模为50 t∙d−1的处理设施,曝气量为0.59 m3∙min−1;设计规模为80 t∙d−1的处理设施,曝气量为0.67 m3∙min−1

    2种类型湿地设计深度为1.2 m,底部均有防渗膜(两布一膜)做防渗处理,以地面为参考面,HFCWs和VFCWs出水口高度为−0.2 m和−0.9 m,HFCWs和VFCWs设计水力负荷分别约为0.93 m3∙(m2∙d)−1和0.36 m3∙(m2∙d)−1,在相同处理规模情况下的HFCWs面积比VFCWs小,水力停留时间短。HFCWs填料类型为轻质页岩陶粒,VFCWs填料类型为砂石颗粒,粒径在1~3 cm。湿地植物包括美人蕉(Canna indica)、菖蒲(Acorus calamus L)、旱伞草(Phyllostachys heteroclada Oliver)、花叶芦竹(Arundo donax)、芦苇(Phragmites australis)和香蒲(Typha orientalis Presl)等挺水植物,按密度9~25 株∙m−2种植,生长情况良好,无死苗、缺苗情况。

  • 采样区域目前执行农村生活污水污染物排放地方标准,具体如下:化学需氧量(chemical oxygen demand, COD)≤100 mg∙L−1、氨氮(ammonia nitrogen, NH3-N)≤25 mg∙L−1、悬浮物(suspended solids, SS)≤30 mg∙L−1、总磷(total phosphorus, TP)≤3 mg∙L−1,未对出水总氮(total nitrogen, TN)进行要求。但是预计不久的将来,会对一部分排入敏感水体的设施提升排放要求,根据修订标准的征求意见稿,预计的标准修订为COD≤60 mg∙L−1、NH3-N≤15 mg∙L−1、SS≤20 mg∙L−1、TP≤2 mg∙L−1、TN≤20 mg∙L−1

  • 调研区域每个站点取样数量为3个,未设置平行样,但在每批水质测试时设置质控样;冬季采样日期为2018年12月,日均气温6 ℃,采样期间存在持续性降雨;夏季采样时间为2019年5月末至7月,日均气温为28 ℃,采样前3 d无降雨。冬季和夏季每个处理设施均依次从集水井、A2O的二沉池和出水井采集3瓶水样于550 mL塑料瓶中密封保存,分别作为A2O单元的进水、A2O单元的出水(亦即湿地单元进水)、以及湿地出水。测试指标为COD、NH3-N、TN、TP、SS,按国标方法[8]进行,试剂无特别说明均为分析纯。水样采集后立即放置于4 ℃冷藏保存,NH3-N和TN在24 h内、TP在48 h内、COD和SS在72 h内完成分析测试。

  • 1)出水水质稳定性分析采用标准差系数法(Vσ),显示处理设施出水各污染指标浓度在中心位置处的集中程度,计算方法如式(1)所示。

    式中:X为各水质指标平均值;Xi为各水质指标监测值;N为样本数量。

    2)出水稳定达标率分析采用偏差系数法和NIKU等[9]开发的模型计算。偏差系数(β),指出水水质各污染指标浓度与规定排放标准浓度的偏离程度,指示判断出水浓度是否集中在小于或大于规定排放标准值的方向上。计算方法如式(2)所示。

    式中:β为偏差系数;Xs为排放标准值浓度,mg∙L−1

    在NIKU等[9]开发的模型计算法中,稳定达标率是指在一定的样本数量中出水浓度符合排放标准浓度的样本数量百分比,计算方法如式(3)所示。

    式中:mx为平均出水浓度,mg∙L−1ϕ为稳定达标系数,是指达到设计出水标准的系数;稳定达标系数可用式(4)计算得到。

    式中:为变异系数,是标准偏差与平均出水浓度的比值;α为不符合排放标准的概率,1−α为符合排放标准的概率;Z1−α为标准正态变量,可由式(5)计算得到,可根据Z1−α值得到稳定达标率。不同稳定达标系数和不同变异系数下出水浓度达标概率如图2所示。

    冬季和夏季2种组合类型的A2O和人工湿地对NH3-N、TN、TP和COD平均去除率,采用单因素方差方法进行差异显著性分析,分析软件为Excel 2019。

  • 1)出水稳定性。2种组合工艺在冬季和夏季的出水标准差系数如图3所示。有研究[10-11]表明,标准差系数Vσ≤0.5是正常波动范围,0.5<Vσ≤1.0是可接受的波动范围,Vσ>1.0则认定为异常波动。在冬季,A2O+VFCWs出水标准差系数分别为NH3-N(0.74)、TN(0.60)、TP(0.44)和COD(0.43),而A2O+HFCWs出水标准差系数则相应为NH3-N(1.06)、TN(0.43)、TP(0.44)和COD(0.55)。与A2O+HFCWs相比,A2O+VFCWs出水稳定性明显较好,特别是NH3-N和COD,浓度标准差系数分别低了0.32和0.12。

    在夏季,A2O+VFCWs出水标准差系数分别为NH3-N(1.45)、TN(0.57)、TP(0.62)和COD(0.81),而A2O+HFCWs出水标准差系数分别为NH3-N(0.81)、TN(0.53)、TP(0.38)和COD(0.54)。A2O+HFCWs出水的各指标标准差系数在夏季与冬季相差不大,甚至比冬季略有改善;而A2O+VFCWs出水的各指标标准差系数在夏季则普遍大幅度升高,显示出水水质的稳定性变差。将2种组合工艺进行比较,则发现夏季A2O+VFCWs出水各指标的标准差系数均比A2O+HFCWs大,出水稳定性较差。

    2)出水稳定达标率和偏差系数。2种组合工艺的稳定达标率和偏差系数如表2所示。利用NIKUS模型进行分析发现在冬季2种组合工艺的出水稳定达标率相差不大,其中NH3-N和COD的稳定达标率接近100%,TP与SS的稳定达标率在90%以上。由于该地区雨污分流不彻底,降雨时雨水通过管网汇入,稀释了进水浓度,此外,部分雨水又通过人工湿地表面进入2级处理单元,降低了出水浓度,在两者的共同作用下,导致出水浓度降低,从而间接提高了设施冬季稳定达标率。在夏季,A2O+VFCWs出水NH3-N、TP、COD和SS稳定达标率比冬季略有下降,分别为89.8%、44.5%、98.1%和85.3%,比A2O+HFCWs高出22.7%、12.2%、5.0%和27.2%。进一步用偏差系数法分析发现在冬季2种组合工艺的出水偏差系数均小于0,这说明其出水浓度集中小于规定浓度排放值,出水稳定达标率较高;在夏季,A2O+HFCWs出水NH3-N、TP、SS与A2O+VFCWs出水TP偏差系数均大于0,2种组合工艺对部分污染物的稳定达标率较低。

    无论是使用NIKUS模型法还是偏差系数法,均表明A2O+VFCWs的稳定达标率高于A2O+HFCWs。在冬季,2种组合工艺的稳定达标率均较高,差别不大;在夏季,A2O+VFCWs的出水TP稳定达标率变差,A2O+HFCWs则是出水NH3-N、TP和SS稳定达标率均变差。夏季出水稳定性下降,这一结论与环境工程学和人工湿地科学研究不一致,通过现场调查发现,该地区农村普遍存在雨污分流不彻底情况,夏季存在强降雨过程,瞬时冲击负荷过大,导致污泥流失,从而影响设施的处理效果。

  • A2O与人工湿地对各污染物去除贡献率占比如图4所示。对整个工艺去除效果进行分析,发现A2O+VFCWs组合工艺对COD、NH3-N、TN和TP的平均去除率,在冬季为(82.0±18.5)%、(94.8±8.8)%、(49.3±16.8)%和(50.9±16.8)%,在夏季为(72.5±13.2)%、(80.0±16.9)%、(30.0±17.8)%和(30.7±18.9)%,对污染物去除起主要作用的单元是VFCWs;而对于A2O+HFCWs组合工艺,对COD、NH3-N、TN和TP的平均去除率在冬季为(59.3±21.4)%、(79.1±19.9)%、(42.3±17.3)%和(25.0±10.2)%,在夏季为(62.2±18.0)%、(58.1±30.8)%、(40.6±20.0)%和(28.9±15.7)%,对污染物去除起主要作用的单元是A2O。在A2O+VFCWs工艺中,各污染物主要由VFCWs去除,贡献率为51%~95%。而在A2O+HFCWs工艺中,对NH3-N、TN和COD起主要作用的为A2O,贡献率为53%~80%。

    1) A2O去除效果及问题分析。2种组合工艺的A2O单元对各污染物去除率如图5所示。对调研处理设施的A2O单元各污染物平均去除率做单因素方差分析,发现无论在冬季还是夏季,NH3-N去除效果差异显著(P<0.01);而TN差异不显著(P>0.05);TP冬季差异显著(P<0.01),夏季则差异显著(0.01<P<0.05);COD冬季差异不显著(P>0.05),夏季差异显著(P<0.01)。A2O+HFCWs中的A2O单元对NH3-N、TN、TP和COD的去除率在冬季为(59.9±31.3)%、(33.6±16.3)%、(25.0±10.2)%和(46.8±23.6)%,在夏季为(56.8±30.4)%、(31.3±24.1)%、(21.8±17.4)%和(54.5±21.8)%,比A2O+VFCWs的A2O单元分别高出39.2%、12.5%、9.4%、5.8%(冬季)和31.4%、10.9%、9.2%、27.4%(夏季),其中,A2O+HFCWs中的A2O单元对TN、TP的去除效果也比A2O+VFCWs略好。

    A2O+VFCWs的A2O单元对各污染物去除效果均远不如A2O+HFCWs的A2O单元,主要是与水力停留时间(hydraulic retention time, HRT)差异有关。据调研结果,该地区A2O+HFCWs的A2O单元设计HRT在约24 h,而A2O+VFCWs的A2O单元HRT约3.6~14.4 h。2种组合工艺进水浓度差异小,在HRT降低后,微生物与污染物的接触不充分,导致污染物去除效果不佳,这是引起A2O单元污染物去除效果差异的最主要的原因[12]。此外,A2O+VFCWs中的A2O单元好氧池供氧不足也是影响污染物去除效果的重要因素。对各组合工艺A2O单元的好氧池氧化还原电位(oxidation-reduction potential,ORP)检测,发现A2O+HFCWs的A2O单元好氧池ORP值为94~144 mV,基本满足氧化和硝化条件;而A2O+VFCWs的A2O单元好氧池ORP为10~77 mV,比硝化所需ORP低出较多[13]。同时,各组合工艺A2O单元对COD和NH3-N的去除效果其实均不是很高,低于A2O单元在市政污水88.0%和85.0%的去除效果,这与农村生活污水进水水质水量具有时间上非均匀性[14]、2种组合工艺前端调节池过小、间歇进水瞬时水量冲击大有关。

    2种组合工艺对TN去除效率均不高。一方面与进水COD/TN低(1.0~2.4)、碳源不足限制反硝化有关[15],也与硝化不充分有关;另一方面,农村生活污水处理设施的A2O混合液回流往往使用气提泵从二沉池底部把污泥液回流至厌氧池,气提泵由于设计不精细,流量往往很难调节,产生回流量不准确、厌氧池和缺氧池溶解氧过高、不利于反硝化等问题。此外,碳源不足不仅影响脱氮,也影响除磷的效果[16]。A2O的除磷作用主要通过排泥实现,对于我国农村生活污水碳氮比很低的情况,活性污泥产量低,通过排泥进行生物除磷的潜力非常有限。

    2)人工湿地去除效果及影响脱氮除磷效果分析。2种类型组合工艺的人工湿地单元在冬季和夏季对各污染物的去除效果如图6所示。对调研处理设施VFCWs和HFCWs 2种类型人工湿地中各污染物平均去除率做单因素方差分析,发现在冬季VFCWs和HFCWs对TN、TP和COD污染物去效果均差异不显著(P>0.05),而NH3-N去除效果差异显著(0.01<P<0.05);但在夏季NH3-N和COD去除效果差异显著(P<0.01),而TN和TP去除效果均差异不显著(P>0.05)。VFCWs的各污染物去除率均高于HFCWs。VFCWs的各污染物去除率均高于HFCWs。VFCWs单元对NH3-N、TN、TP、COD的去除率在冬季为(61.4±24.4)%、(22.7±8.5)%、(27.4±21.2)%和(58.7±25.4)%,在夏季为(71.6±26.5)%、(38.3±32.8)%、(39.2±32.9)%和(59.6±25.1)%,比HFCWs分别高出34.9%、1.3%、10.0%、16.1%(冬季)和54.9%、10.5%、5.6%、28.9%(夏季)。

    与HFCWs相比,VFCWs对NH3-N、TN、TP、COD的去除率均有所提高,特别是对NH3-N和COD的去除率有明显提高。这首先是因为VFCWs设计得足够大,水力负荷较低,而HFCWs的设计负荷相对偏高。水力负荷低有利于延长水力停留时间,还有利于增加湿地内部的溶解氧[17-18],从而提高了对NH3-N和COD的去除效果。王鹏等[19]发现,当水力负荷由0.153 m3∙(m2∙d)−1降低至0.032 m3∙(m2∙d)−1时,湿地内部溶解氧增加了0.20 mg∙L−1,COD去除率提高了20.0%。此外,由于2种类型人工湿地进出水方式不同,VFCWs的进出水方式更有利于形成好氧环境,从而增加NH3-N和COD的去除率。VFCWs采用上部进水、下部出水的方式,出水口位置比进水口低0.7 m,而HFCWs进水方式为左进右出,出水口比进水口位置仅低0.1 m。有研究[20]显示,当湿地出水口位置由中部0.5 m降低至底部0 m时,则NH3-N去除率可提高26.0%以上,这与湿地内部非饱和区形成好氧环境有关[21],湿地内部溶解氧浓度增加[22-23],有助于NH3-N的去除。HFCWs要想提高污染物去除效果,也可以通过从调节湿地内部水位、优化饱和区和非饱和区的分布和湿地内部添加曝气等途径入手。

    2种类型人工湿地对TN去除率较低,主要与湿地进水碳源供给不足和湿地内部供氧条件受到限制有关,湿地内硝化、反硝化不充分,导致脱氮效果较差[24],这与龙翠芬等[25]的研究结果相差较大。这是由于调研区内人工湿地处理的是A2O尾水,COD/TN较低,仅为1.4~2.4。丁怡等[26]的研究结果也表明,进水碳氮比在3以下时,湿地对TN的去除率较低,只有35.0%左右。WANG等[27]把植物秸秆添加到人工湿地基质层来缓释碳源,在处理碳氮比为3的生活污水时,TN去除率提高到了51.8%。夏艳阳等[28]研究复合垂直流-水平流人工湿地的脱氮效果,通过在垂直流出水增加25%体积比的化粪池污水,TN去除率提高了11.0%。今后,如何针对低碳氮比农村生活污水提高湿地的TN去除效果,还需要持续开展深入的研究。

    VFCWs对TP的去除率比HFCWs略高,但是两者对TP去除效果均不明显。有文献报道湿地内部基质吸附占湿地对TP去除总量的85.0%以上[29],而植被吸收占1.4%~41.2%[30]。本研究区域的2种组合工艺均建于2015—2017年,湿地已运行1~2 a,其中轻质页岩陶粒和砂石颗粒对TP吸附饱和量为190.3 mg∙kg−1和28.3 mg∙kg−1[31]。以设计处理规模为30 t∙d−1为例,按照设计进出水浓度和基质填充量计算,人工湿地运行1 a后,2种基质已达到208.6 mg∙kg−1和36.5 mg∙kg−1,这说明现有的基质已经达到吸附饱和,对磷吸附的潜力已降低。袁东海等[32]的研究结果表明,砂石基质达到吸附饱和后,磷素释放比例较大,增加出水TP超标的风险。因此,需要定期更换湿地内部填料基质,或在湿地末端出水口使用铁碳填料[33]和黄铁矿基质[34],可强化湿地除磷效果。

    3) 2种组合工艺运维管理情况。2种组合工艺分布于11个乡镇,由5家不同的运维公司进行运维。由于浙江省陆续出台《农村生活污水治理设施第3方运维管理导则(试行)》、《农村生活污水治理设施运行维护技术导则》等文件,各运维公司需要按照上述导则的要求进行运维管理。各地方政府则不断加强对设施的运维监管,把农村生活污水治理效果与政府工作绩效考核挂钩,杜绝了处理设施“晒太阳”的情况。分别对同种工艺类型在不同乡镇的污染物去除效果做单因素方差分析,发现无论是A2O+VFCWs 还是A2O+HFCWs,虽然由不同公司设计和运维,但同种组合工艺在不同乡镇的污染物去除效果之间差异不显著(P>0.05),表明不同公司的设计和运维差异并未足以导致处理效果之间的显著性差异。

    此外,各运维企业对生态处理运维效果好,但对生物处理系统的运维效果较差,其主要原因是运维队伍技术力量不足。现场调研中发现,人工湿地的运维情况较好,湿地无堵塞、植物生长良好,但A2O工艺的运维均存在共性问题。A2O工艺的运维均存在的问题主要归为以下2点:一是因调节池内液位计控制不够精确,存在瞬时进水量过大,导致池内微生物流失和水力负荷过大,水力停留时间减小;二是A2O内溶解氧控制不好,厌氧和缺氧池中氧化还原电位太高,而好氧池中溶解氧供给不足、氧化还原电位低,从而影响脱氮除磷效果。

  • 1) A2O+VFCWs的出水稳定达标率在冬夏两季均比A2O+HFCWs高。A2O+VFCWs出水的水质稳定性在冬季较好,但在夏季波动较大,稳定性有所降低。

    2)在A2O+VFCWs组合工艺中,VFCWs对污染物去除起主要作用;而在A2O+HFCWs组合工艺中,则是A2O对污染物去除起主要作用。

    3)由于进水碳氮比太低和排泥较少等原因,A2O+VFCWs中的A2O单元对TN和TP的平均去除率,在冬季为(20.7±16.3)%和(15.6±10.2)%,在夏季为(20.4±11.9)%和(12.6±13.9)%,而A2O+HFCWs中的A2O单元对TN和TP的平均去除率,在冬季为(33.2±16.3)%和(25.0±10.2)%,在夏季为(31.3±24.1)%和(21.9±17.4)%。这是因为A2O+VFCWs的A2O单元的有效容积偏小,且溶解氧控制不足,导致其对各污染物的去除率均明显低于A2O+HFCWs组合工艺中的A2O单元。

    4) A2O+VFCWs的VFCWs单元对COD、NH3-N、TN和TP的平均去除率,在冬季为(58.8±25.4)%、(61.4±24.4)%、(22.7±8.5)%和(27.4±21.2)%,比HFCWs分别提高了16.0%、36.9%、1.3%和9.5%,在夏季为(59.9±25.0)%、(71.6±26.5)%、(38.3±32.8)%和(39.2±32.9)%,比HFCWs提高了28.8%、52.61%、10.5%和5.0%。这主要得益于VFCWs较低的设计水力负荷和较低的出水口位置设计有关。

    5)该地区的A2O+人工湿地组合工艺,在处理农村生活污水方面存在很大的提升改造空间。可以从增大反应单元容积、优化反应器结构,以及优化控制溶解氧、回流比等条件着手,分别提升A2O单元和人工湿地单元的污染物去除效果,充分发挥农村污水处理设施的作用与功能。

参考文献 (34)

返回顶部

目录

/

返回文章
返回