-
厌氧氨氧化(Anammox)为在缺氧条件下,厌氧氨氧化菌利用
${\rm{NO}}_2^ - $ -N(电子受体)将${\rm{NH}}_4^ + $ -N(电子供体)氧化为N2,同时利用CO2进行细胞合成的过程[1-3]。相较于传统硝化-反硝化脱氮工艺,Anammox工艺具有曝气量少、不消耗有机物及污泥产率低等特点[4-5],并且已成功应用于城市污水处理厂的污泥水及与此类似的含有高浓度氨氮的工业废水[6-9]。然而厌氧氨氧化菌生长缓慢(μmax=0.065 d−1),世代周期长(11 d)[10-12],这已成为制约Anammox工艺广泛应用的主要因素,因此,如何快速启动Anammox成为突破其应用的一种有效手段。与污泥水和其他高浓度氨氮废水相比,城市污水温度低,且氨氮浓度也低,这是Anammox工艺应用于城市污水处理厂主流工艺的瓶颈。LOTTI等[13]研究发现,温度越低,Anammox菌活性越小(15 ℃下Anammox活性仅为30 ℃下的15%~42%),因此,在低温条件下,对Anammox菌进行培养时,增殖相同数量的Anammox菌则需要更长的时间。Anammox菌在常温下生长缓慢,但SCAGLIONE等[14]研究表明,Anammox菌衰减系数为0.004 8 d−1,这表明Anammox菌一旦增殖到一定数量,将长期存在并发挥作用。因此,如何在常温低基质浓度下快速富集Anammox菌是Anammox工艺处理低浓度氨氮废水的关键。
本研究采用某城市污水处理厂A2/O系统中缺氧池填料作为MBBR的载体,在常温(13~37 ℃)和低浓度含氮废水条件下,直接进行启动,对Anammox菌进行富集培养,探讨启动策略及Anammox菌的富集情况,为MBBR在常温下处理低浓度含氮废水提供了参考。
常温MBBR处理低浓度含氮废水的快速启动及运行状况
Rapid start-up and running of MBBR treating low nitrogen concentration wastewater at room temperature
-
摘要: 为探讨厌氧氨氧化MBBR的快速启动及处理低浓度含氮废水特性,采用某城市污水处理厂A2/O系统中缺氧池填料作为MBBR的载体直接启动并运行。结果表明,经过248 d启动,MBBR处理负荷(以N计)达到5 046.57 mg·(m2·d)−1,Anammox活性(以NH
$\ _4^ + $ -N计)达到4 627.25 mg·(m2·d)−1;NH$\ _4^ + $ -N与NO$\ _2^ - $ -N的消耗量和${\rm{NO}}_3^ - $ -N的生成量之间的比值关系和反应器内各微生物活性及反应器运行条件及方式有关。采用基质利用速率测定方法对Anammox活性进行测定,探讨Anammox菌在常温条件下的增殖情况,确定Anammox菌增殖系数为0.026 1 d−1。Anammox菌MBBR的成功启动为Anammox技术处理低浓度含氮废水提供了参考。Abstract: In order to investigate the rapid start-up of anammox process in MBBR and the treatment of low nitrogen concentration wastewater, the fillers from an anoxic tank of A2/O system in a municipal wastewater treatment plant was taken as MBBR carrier for direct start-up and running. The result showed that after 248 days start-up, the treating loading of MBBR as nitrogen could reach 5 046.57 mg·(m2·d)−1, and anammox activity as${\rm{NH}}_4^ + $ -N could reach 4 627.25 mg·(m2·d)−1. The ratios of${\rm{NH}}_4^ + $ -N and${\rm{NO}}_2^ - $ -N consumption to${\rm{NO}}_3^ - $ -N production were related to the activity of microorganisms in MBBR and its running conditions and modes. A test for the substrate utilization rate was used to determine the anammox activity and study the proliferation of at room temperature. The corresponding proliferation coefficient of anammox bacteria was 0.026 1 d−1. The successful start-up of the anammox MBBR provides a reference for low nitrogen concentration wastewater treatment by anammox tecnology. -
-
[1] BAGCHI S, BISWAS R, NANDY T. Autotrophic ammonia removal processes: Ecology to technology[J]. Critical Reviews in Environmental Science and Technology, 2012, 42(13): 1353-1418. doi: 10.1080/10643389.2011.556885 [2] KUENEN J G. Anammox bacteria: From discovery to application[J]. Nature Reviews Microbiology, 2008, 6(4): 320-326. doi: 10.1038/nrmicro1857 [3] SCHMIDT I, SLIEKERS O, SCHMID M, et al. New concepts of microbial treatment processes for the nitrogen removal in wastewater[J]. FEMS Microbiology Reviews, 2003, 27(4): 481-492. doi: 10.1016/S0168-6445(03)00039-1 [4] TERADA A, ZHOU S, HOSOMI M. Presence and detection of anaerobic ammonium-oxidizing (anammox) bacteria and appraisal of anammox process for high-strength nitrogenous wastewater treatment: A review[J]. Clean Technologies & Environmental Policy, 2011, 13(6): 759-781. [5] KARTAL B, KUENEN J G, VAN LOOSDRECHT M C M. Sewage treatment with anammox[J]. Science, 2010, 328(5979): 702-703. doi: 10.1126/science.1185941 [6] 盖书慧, 张雁秋, 杨燕舞. 新型脱氮工艺-厌氧氨氧化(ANAMMOX)[J]. 环境科学与管理, 2008, 34(4): 98-101. doi: 10.3969/j.issn.1673-1212.2008.04.026 [7] 张少辉. 厌氧氨氧化工艺研究[D]. 杭州: 浙江大学, 2004. [8] AZARI M, WALTER U, REKERS V, et al. More than a decade of experience of landfill leachate treatment with a full-scale anammox plant combining activated sludge and activated carbon biofilm[J]. Chemosphere, 2017, 174: 117-126. doi: 10.1016/j.chemosphere.2017.01.123 [9] WANG G, XU X, ZHOU L, et al. A pilot-scale study on the start-up of partial nitrification-anammox process for anaerobic sludge digester liquor treatment[J]. Bioresource Technology, 2017, 241: 181-189. doi: 10.1016/j.biortech.2017.02.125 [10] ZHANG L, NARITA Y, GAO L, et al. Maximum specific growth rate of anammox bacteria revisited[J]. Water Research, 2017, 116: 296-303. doi: 10.1016/j.watres.2017.03.027 [11] LÓPEZ H, PUIG S, GANIGUÉ R, et al. Start-up and enrichment of a granular anammox SBR to treat high nitrogen load wastewaters[J]. Chemical Technology and Biotechnology, 2008, 83(3): 233-241. doi: 10.1002/jctb.1796 [12] JETTEN M, STROUS M, VAN DE PAS-SCHOONEN K T, et al. The anaerobic oxidation of ammonium[J]. FEMS Microbiology, 1999, 22(5): 421-437. [13] LOTTI T, KLEEREBEZEM R, VAN LOOSDRECHT M C M. Effect of temperature change on anammox activity[J]. Biotechnology and Bioengineering, 2015, 112(1): 98-103. doi: 10.1002/bit.25333 [14] SCAGLIONE D, CAFFAZ S, BETTAZZI E, et al. Experimental determination of Anammox decay coefficient[J]. Journal of Chemical Technology & Biotechnology, 2009, 84(8): 1250-1254. [15] VAN D G A A, DE BRUIJN P, ROBERTSON L A, et al. Autotrophic growth of anaerobic ammonium-oxidizing micro-organisms in a fluidized bed reactor[J]. Microbiology, 1996, 142(8): 2187-2196. doi: 10.1099/13500872-142-8-2187 [16] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. [17] AMANN R I, KRUMHOLZ L, STAHL D A. Fluorescent- oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology[J]. Journal of Bacteriology, 1990, 172(2): 762-770. doi: 10.1128/JB.172.2.762-770.1990 [18] AMANN R I, BINDER B J, OLSON R J, et al. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations[J]. Applied and Environmental Microbiology, 1990, 56(6): 1919-1925. doi: 10.1128/AEM.56.6.1919-1925.1990 [19] DAIMS H, BRÜHL A, AMANN R, et al. The domain-specific probe EUB338 is insufficient for the detection of all bacteria: Development and evaluation of a more comprehensive probe set[J]. Systematic and Applied Microbiology, 1999, 22(3): 434-444. doi: 10.1016/S0723-2020(99)80053-8 [20] KARTAL B, RATTRAY J, NIFTRIK L A V, et al. Candidatus “Anammoxoglobus propionicus” a new propionate oxidizing species of anaerobic ammonium oxidizing bacteria[J]. Systematic & Applied Microbiology, 2007, 30(1): 39-49. [21] STROUS M, KUENEN J G, JETTEN M S M. Key physiology of anaerobic ammonium oxidation[J]. Applied and Environmental Microbiology, 1999, 65(7): 3248-3250. doi: 10.1128/AEM.65.7.3248-3250.1999 [22] LOTTI T, KLEEREBEZEM R, KIP C V E T, et al. Anammox growth on pretreated municipal wastewater[J]. Environmental Science and Technology, 2014, 48(14): 7874-7880. doi: 10.1021/es500632k [23] YUYA K, KAZUICHI I, FUTABA K, et al. Tolerance level of dissolved oxygen to feed into anaerobic ammonium oxidation (Anammox) reactor[J]. Journal of Water and Environment Technology, 2011, 9(2): 169-178. doi: 10.2965/jwet.2011.169 [24] CARVAJAL-ARROYO J M, SUN W J, SIERRA-ALVAREZ R, et al. Inhibition of anaerobic ammonium oxidizing (anammox) enrichment cultures by substrates, metabolites and common wastewater constituents[J]. Chemosphere, 2013, 91(1): 22-27. doi: 10.1016/j.chemosphere.2012.11.025 [25] STROUS M, HEIJNEN J J, KUENEN J G, et al. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms[J]. Applied Microbiology and Biotechnology, 1998, 50(5): 589-596. doi: 10.1007/s002530051340