制革废水处理过程中微生物代谢产物特征及铬分布的解析

徐芝芬, 周姣, 马宏瑞, 李金城, 韦春满, 王华鹏. 制革废水处理过程中微生物代谢产物特征及铬分布的解析[J]. 环境工程学报, 2020, 14(7): 1771-1778. doi: 10.12030/j.cjee.201909159
引用本文: 徐芝芬, 周姣, 马宏瑞, 李金城, 韦春满, 王华鹏. 制革废水处理过程中微生物代谢产物特征及铬分布的解析[J]. 环境工程学报, 2020, 14(7): 1771-1778. doi: 10.12030/j.cjee.201909159
XU Zhifen, ZHOU Jiao, MA Hongrui, LI Jincheng, WEI Chunman, WANG Huapeng. Analysis of microbial metabolites characteristics and chromium distribution during tannery wastewater treatment[J]. Chinese Journal of Environmental Engineering, 2020, 14(7): 1771-1778. doi: 10.12030/j.cjee.201909159
Citation: XU Zhifen, ZHOU Jiao, MA Hongrui, LI Jincheng, WEI Chunman, WANG Huapeng. Analysis of microbial metabolites characteristics and chromium distribution during tannery wastewater treatment[J]. Chinese Journal of Environmental Engineering, 2020, 14(7): 1771-1778. doi: 10.12030/j.cjee.201909159

制革废水处理过程中微生物代谢产物特征及铬分布的解析

    作者简介: 徐芝芬(1985—),女,博士研究生。研究方向:制革废水污染物生物降解。E-mail:364018683@qq.com
    通讯作者: 马宏瑞(1963—),男,博士,教授。研究方向:化工污染控制与资源化技术。E-mail:mahrxingfeng@163.cn
  • 基金项目:
    国家水体污染控制与治理科技重大专项(2017ZX07602-001);广西重点研发计划(AB16380295);广西科技攻关计划(1598016-14);候立安院士工作站能力建设项目(AD18126018);新疆重大科技专项(2016A03008-1)
  • 中图分类号: X703

Analysis of microbial metabolites characteristics and chromium distribution during tannery wastewater treatment

    Corresponding author: MA Hongrui, mahrxingfeng@163.cn
  • 摘要: 制革废水生化处理后的出水仍残留低浓度的铬,为揭示微量铬在活性污泥胞外聚合物(EPS)中的分布及胞外聚合物在生物处理过程中的转化,通过改良热提取法提取生物处理过程中EPS和SMP,测定各组分中多糖、蛋白质、总铬等含量,分析制革废水生物处理中EPS组分的特征、金属铬的分布和EPS各组分含量。结果表明:一级生物处理中EPS的蛋白质和多糖含量均逐渐降低,二级生物处理中EPS含量增加,活性污泥SMP与邻近沉淀池出水组分及溶解性有机物含量具有较强的相似性;铬在不同来源污泥EPS中的分布存在差异,污泥表面吸附及EPS对铬的络合富集、EPS的水解及代谢组分外排的行为均影响铬的迁移;通常,水体中铬首先被S-EPS吸收,经LB-EPS运输渗透至TB-EPS中储存。根据Pearson分析结果,总铬的分布与胞外聚合物中PS/PN及PS含量呈显著正相关(P<0.01)。以上研究结果可为制革废水铬排放总量控制和深度处理提供参考。
  • 目前,我国每年大约产生3.0×107 t城市污泥[1],且随着中国污水处理厂的升级和扩建,城市污泥产量每年以13%的速率递增[2]。大量城市污泥的处理与处置是我国目前亟待解决的环境问题。食品处理厂剩余污泥中有机物含量高,营养丰富,大多为蛋白质、多糖、脂肪等[3],不含有毒有害物质。目前,我国食品污泥处理的方法主要有厌氧消化、好氧发酵、焚烧、卫生填埋、土地利用等。另一方面,我国农作物秸秆近20种,年产量约7.0×108 t,约占世界秸秆总量的25%。随着社会经济迅速发展和人口的增加,农作物秸秆总量将以每年5%~10%的速度递增[4]。然而,目前农村地区的秸秆利用率还很低,存在秸秆焚烧、随意丢弃等现象[5]。好氧堆肥方法成本低、无害化程度高、处理量大、处理后的产品可作为有机肥,在农业生产上具有广阔的应用前景。利用食品厂污水处理剩余污泥与农作物秸秆进行混合好氧堆肥,既解决了剩余污泥问题与农作物秸秆问题,又可得到生物有机肥[6],适用于农业大田生产、果树种植及园林绿化,对减轻长期施用化肥造成的农田环境污染、增加土壤肥力[7-8]、提高农产品品质及增加农业收入,具有良好的经济、环境和社会效益。

    在堆肥初期,由于堆体中土著微生物数量较少,微生物活性较低,存在着发酵周期长、堆肥效率慢等缺点。复合微生物菌剂因微生物间的协同作用,可有效调节堆肥原料中的菌群结构,加快堆肥速率,缩短堆肥周期,促进堆体腐熟[9]。目前,我国已在堆肥微生物菌剂的研究方面取得了一定进展。ZHAO Y等[10]从堆肥中筛出4株嗜热放线菌,制成一种微生物菌剂,能够提高堆体腐熟程度,缩短了堆肥周期。XI B D等[11]在堆肥过程中投加了一种复合微生物菌剂,增加堆肥过程中优势菌的多样性,提高堆肥效率。ZHOU C等[12]在堆肥过程中接种了一种由放线菌、哈茨木霉、米曲霉等组成的复合微生物菌剂,缩短了堆肥周期,提高了木质纤维的降解。

    与液态微生物菌剂相比,固态菌剂中的微生物更易存活,保存时间长,保存成本低,运输方便,更适用于大规模的生产与应用。针对食品厂剩余污泥与秸秆的组成,本研究筛选出5株优势芽孢杆菌,研制出一种固态微生物菌剂。本研究首先以活菌数和芽孢率为评价依据,优化固态微生物菌剂制备过程中的关键影响因素,在此基础上,通过正交实验获得最佳固态微生物菌剂的制备方法,最后,通过比较不同保存时间固态微生物菌剂的实际堆肥效果,研究固态微生物菌剂的稳定性,为其工业化生产提供依据。

    实验用脱水污泥为某食品厂污水处理剩余污泥,玉米秸秆购自河南郑州。营养肉汤培养基购自青岛海博生物技术有限公司。

    堆肥反应器为聚丙烯塑料箱(560 mm×360 mm×325 mm),总容积为65 L,曝气泵底部间歇供氧,每12 h曝气1次,曝气1 h,曝气量为0.3 L·(L·min)−1,并通过距离箱底高约10 cm的多孔筛板实现均匀供氧。当堆体温度高于55 ℃时,每天翻堆1次。

    本研究用于制备固态微生物菌剂的菌株为实验室已有5株芽孢杆菌,编号分别为ZX5、ZX6、GX2、GX5和GX9,其获得方法如下:以食品厂污水处理剩余污泥为堆肥原料、市售玉米秸秆为辅料,二者的添加比例分别为60%和40%,再加入5%江苏省无锡市某区含落叶的表层土壤;所得混合物料共计30 kg,混合物的含水率为60%±5%,碳氮比(C/N比)为25±5,混合均匀后,装入堆肥反应器中,持续曝气,定期翻堆,进行好氧堆肥;当堆体温度维持35 ℃和55 ℃达7 d左右时,分别从堆体中心和四周取5个等量堆肥样品,混匀后,依次进行微生物的初筛、复筛及分离纯化,进而获得上述菌株。

    将5株芽孢杆菌分别接种至高温灭菌后的营养肉汤培养基中,接种量为1.0×107 CFU·mL−1。ZX5和ZX6的培养温度为35 ℃,培养1~2 d;GX2、GX5和GX9的培养温度为50 ℃,培养1~2 d。将获得的不同菌株的发酵液按1∶7∶617∶295∶443的比例混合,制成复合微生物菌液,备用。

    载体筛选。分别选择秸秆、炭化秸秆、腐熟物料、褐煤作为载体,将其研磨,过30目筛网,121 ℃灭菌30 min,然后放在105 ℃烘箱中烘干备用。将复合微生物菌液与载体按照5:1的比例混匀,放在35 ℃烘箱中烘干。将制备好的微生物菌剂室温下密封干燥保藏30 d后,测定菌剂中活菌数及芽孢率。

    海藻糖含量。以腐熟物料作为载体,将其研磨,过30目筛网,121 ℃灭菌30 min,然后放在105 ℃烘箱中烘干备用。在复合微生物菌液中投加0%、4%、8%、12%、16%和20%的海藻糖,混匀后,再与载体按照5∶1的比例混匀,放在35 ℃烘箱中烘干。将制备好的微生物菌剂室温下密封干燥保藏30 d后,测定菌剂中活菌数及芽孢率。

    含水率。以腐熟物料作为载体,将其研磨,过30目筛网,121 ℃灭菌30 min,然后放在105 ℃烘箱中烘干备用。将复合微生物菌液与载体按照5∶1的比例混匀,放在35 ℃烘箱中烘至含水率为15%、20%、25%、30%、35%和40%。将制备好的微生物菌剂室温下密封干燥保藏30 d后,测定菌剂中活菌数及芽孢率。

    根据单因素实验的结果,进行3因素3水平正交实验(见表1),将制备好的微生物菌剂室温下密封干燥保藏30 d后,测定菌剂中活菌数及芽孢率。研究载体种类、海藻糖浓度及含水率对菌剂保存效果的影响,进而获得最佳菌剂制备条件。

    表 1  正交实验设计
    Table 1.  Design of the orthogonal experiment
    水平因素
    (A)载体(B)海藻糖浓度/%(C)含水率/%
    1炭化秸秆015
    2秸秆420
    3腐熟物料825
     | Show Table
    DownLoad: CSV

    以食品厂污水处理剩余污泥为堆肥原料,市售玉米秸秆为辅料(二者重量之比为6:4),获得用于好氧堆肥的混合物料,其组成性质如表2所示。将15 kg物料装入堆肥箱中进行好氧堆肥,具体操作同1.2.1节,共4个堆肥箱,其中,对照实验不添加任何菌剂,记为CK,添加新鲜固态复合微生物菌剂的实验记为ZJ,添加室温下保存30 d菌剂的实验记为ZJ-30,添加室温下保存60 d菌剂的实验记为ZJ-60,研究所得固态微生物菌剂保存时间对堆肥效果的影响。微生物菌剂直接添加在堆肥原料中,菌剂添加量均为堆体湿重的0.3%,整个堆肥过程持续10 d。

    表 2  混合物料的物化性质
    Table 2.  Physicochemical properties of the mixture
    有机质含量/%凯氏氮/(mg·g−1)C/NpH含水率/%蛔虫死亡率/%粪大肠菌群数/(MPN·g−1)种子发芽指数/%半纤维素含量/(mg·g−1)纤维素含量/(mg·g−1)木质素含量/(mg·g−1)
    87.29±0.1219.24±0.3626.32±0.516.35±0.3267.24±2.2345.14±1.592.0×10344.79±1.53238.1±5.54318.2±4.4859.4±2.32
     | Show Table
    DownLoad: CSV

    菌剂中有效活菌数采用平板计数法[13]测定。芽孢率的测定:将菌液在70 ℃下加热10 min,再利用平板计数法检测菌剂中的芽孢数,其芽孢率[14]计算见式(1)。

    w=m1m0×100% (1)

    式中:w为芽孢率,%;m0为灭菌前菌落数,CFU·g−1m1为加热后菌落数,CFU·g−1

    粪大肠菌群数和蛔虫死亡率均按照生物有机肥标准(NY 884-2012)中标准方法测定。种子发芽指数(GI)测定方法:堆肥样品按水∶物料=10∶1浸提,160 r·min−1振荡1 h后过滤,吸取5 mL滤液于铺有滤纸的培养皿中,滤纸上放置10颗籽粒饱满、均匀一致的种子,25 ℃下培养72 h后,测定种子的根长,同时用去离子水做空白对照,种子发芽指数计算[15]见式(2)。

    RGI=q1l1q0l0×100% (2)

    式中:RGI为种子发芽指数,%;q0为去离子水处理的种子发芽率,%;q1为堆肥浸提液处理的种子发芽率,%;l0为去离子水处理的种子根长,cm;l1为堆肥浸提液处理的种子根长,cm。

    有机质含量采用重铬酸钾氧化法(NY 525-2012)测定。有机碳含量=有机质含量/1.724(氧化系数)[16]。凯氏氮(TKN)采用凯氏定氮法[17]测定。C/N比为有机碳含量/凯氏氮含量[18]。pH的测定是将样品与水按1∶10的比例混合,浸提1 h后,采用pH计法[19]测定。含水率采用烘箱干燥法[20]测定。

    半纤维素、纤维素、木质素的测定:采用ANKOM A2000i型全自动纤维分析仪测定堆体中半纤维素、纤维素和木质素的含量[21]

    堆体温度每隔12 h测定1次,在堆体的中央和四周均匀测温5次,取平均值[17]

    活菌数是衡量菌剂质量的有效指标[22]。芽孢杆菌是一种革兰氏阳性菌,在其生长的一定阶段内,会在营养细胞内形成一个圆形、卵圆形或圆柱形的休眠体,即为芽孢[23]。芽孢能适应不良环境,对高温、紫外线、干燥、电离辐射和很多有毒的化学物质都有很强的抵抗性[24],而在条件适宜时又可转变为营养细胞,从事正常的代谢活动,因此,在测定活菌数的同时,可观察芽孢率的变化情况[25]

    图1可知,4种载体对菌剂活菌数及芽孢率的影响顺序依次为腐熟物料>秸秆>炭化秸秆>褐煤,其中,以腐熟物料作为载体的菌剂活菌数和芽孢率最高,以秸秆为载体的菌剂次之。以腐熟物料、秸秆和炭化秸秆为载体的菌剂保藏30 d后,活菌数均较高,均为5.0×109 CFU·g−1以上,芽孢率则分别为87.3%、76.4%和72.1%。以褐煤为载体的菌剂保藏30 d后,活菌数仅为1.0×109 CFU·g−1,芽孢率仅为37.5%,不利于长期保藏。因此,选择腐熟物料、秸秆和炭化秸秆作为正交实验时的3个水平。由于腐熟物料更易得,以下研究均以腐熟物料为固态微生物菌剂的载体。

    图 1  不同载体的微生物菌剂中活菌数及芽孢率
    Figure 1.  Viable counts and sporulation rates of microbial inoculants in different carriers

    研究表明,在高温、冷冻、干燥等恶劣条件下,海藻糖能够在细胞表面形成独特的保护膜,有效保护生物分子不被破坏,提高微生物菌剂的存活率,延长微生物菌剂的储存期[26]。由图2可知,随着海藻糖浓度的提高,菌剂中芽孢率呈现先上升后下降的趋势,而活菌数含量却呈现先下降后上升的趋势。海藻糖也是生物体储备的碳源[27],可以被微生物所利用。海藻糖浓度过高时,微生物可利用的碳源增多,芽孢就会萌发,转化为营养细胞而过早失活,降低菌剂的使用效果。因此,当海藻糖投加量为12%~20%时,菌剂中芽孢率较低。当海藻糖投加量为0%~8%时,菌剂中芽孢率较高,且此时菌剂中活菌数也较高,均为5.0×109 CFU·g−1以上。故选用0%、4%、8%作为正交实验中3个水平。

    图 2  不同海藻糖浓度的微生物菌剂中活菌数及芽孢率
    Figure 2.  Viable counts and sporulation rates of microbial inoculants with different trehalose concentrations

    固态菌剂的含水率会显著影响菌剂的保存效果,含水率越高,越不利于菌剂的长期保藏[28]。菌剂中含水率越高,越促进芽孢的萌发,使其转化为营养细胞,不利于长期保存。此外,菌剂中含水率越高,越易在保存过程中发霉,滋生出大量杂菌[29]。由图3可知,随着固态菌剂最终含水率的提高,菌剂中芽孢率在不断降低。含水率为15%~25%时,菌剂中芽孢率较高,高于80%;活菌数高于5.0×109 CFU·g−1。当菌剂的含水率为30%~40%时,菌剂中芽孢率较低,均在70%以下,活菌数也较低,不利于菌剂的长期保存。这可能是由于菌剂中水分适宜,会促进芽孢萌发,使其转换为营养细胞,降低了菌剂中的芽孢率;在长期保存过程中,营养细胞失活,降低了菌剂中活菌数。减少含水率,更有利于菌剂的长期保存[30]。故选用15%、20%、25%作为正交实验中的3个水平。

    图 1  不同含水率的微生物菌剂中活菌数及芽孢率
    Figure 1.  Viable counts and sporulation rates of microbial inoculants with different water contents

    在上述单因素实验的基础上,按表3进行了影响因素的正交实验。对正交实验结果进行分析,结果如表4所示。从活菌数来看,载体、海藻糖浓度和含水率对其影响程度分别为海藻糖浓度(B)>含水率(C)>载体(A),菌剂最佳配方为B2C1A3。从芽孢率来看,载体、海藻糖浓度和含水率对其影响程度分别为含水率(C)>载体(A)>海藻糖浓度(B),菌剂最佳配方为C1A3B2。综合考虑活菌数和芽孢率的变化情况,最佳菌剂配方为:以腐熟物料作为载体,投加4%的海藻糖,含水率为15%。

    表 3  正交实验结果
    Table 3.  Results of the orthogonal experiment
    名称载体(A)海藻糖8.5含量(B)含水率(C)活菌数/8.5(亿CFU·g−1)芽孢率/%
    111124.2±0.57100
    212237.5±2.1293.4±1.48
    313326.4±0.8543.2±0.21
    421330.0±2.8391.6±1.27
    522135.0±1.4164.3±0.14
    623240.5±3.5495.0±0.42
    731224.0±0.5763.5±1.13
    832344.0±1.41100
    933138.5±2.55100
     | Show Table
    DownLoad: CSV
    表 4  正交实验数据分析
    Table 4.  Analysis of the orthogonal experiment
    指标因素K1K2K3R
    活菌数载体(A)29.3735.1735.506.13
    海藻糖浓度(B)26.0738.8335.1312.76
    含水率(C)36.2335.3328.477.76
    芽孢率载体(A)78.8783.6387.838.96
    海藻糖浓度(B)85.0385.9079.406.50
    含水率(C)98.3395.0057.0041.33
     | Show Table
    DownLoad: CSV

    对上述正交实验结果进行了方差分析,结果如表5所示。在置信区间ɑ=0.05范围内,载体、海藻糖浓度和含水率对活菌数影响显著。在置信区间ɑ=0.05范围内,含水率对芽孢率影响显著,而载体和海藻糖浓度对芽孢率影响不显著。因此,确定腐熟物料作为载体,投加4%的海藻糖,含水率为15%作为最佳菌剂配方。

    表 5  方差分析结果
    Table 5.  Variance analysis of the orthogonal experiment
    指标因素偏差平方和自由度FF临界值显著性
    活菌数载体(A)71.37222.6619
    海藻糖浓度(B)258.88282.1819
    含水率(C)108.28234.3719
    误差3.152
    芽孢率载体(A)120.7620.8319
    海藻糖浓度(B)74.7420.5119
    含水率(C)3163.56221.6319
    误差146.272
     | Show Table
    DownLoad: CSV

    以空白为对照,分别将新鲜固态微生物菌剂、保藏30 d的菌剂以及保藏60 d的菌剂用于好氧堆肥,研究菌剂保存时间对堆肥效果的影响。随着保存时间的延长,4个堆体中温度变化如图4所示。

    图 4  4个堆体的温度变化
    Figure 4.  Temperature changes of four piles

    结果表明,堆体CK在60 h左右进入55 ℃以上的高温期,在84 h左右出现堆体最高温度,为58 ℃,55 ℃以上的高温持续时间为40 h,50 ℃以上的持续时间为70 h。堆体ZJ在18 h左右进入55 ℃以上的高温期,在60 h左右出现堆体最高温度,为64 ℃,55 ℃以上的高温持续时间为114 h,50 ℃以上的持续时间为144 h。堆体ZJ-30在18 h左右进入55 ℃以上的高温期,在36 h左右出现堆体最高温度,为69 ℃,55 ℃以上的高温持续时间为129 h,50 ℃以上的持续时间为147 h。堆体ZJ-60在19 h左右进入55 ℃以上的高温期,在48 h左右出现堆体最高温度,为66 ℃,55 ℃以上的高温持续时间为132 h,50 ℃以上的持续时间为148 h。相比于堆体CK,堆体ZJ、堆体ZJ-30、堆体ZJ-60分别提前了42、42和41 h进入高温阶段,高温持续时间分别延长了74、89和92 h,50 ℃以上的持续时间分别延长了74、77和78 h。比复合微生物菌剂PTCMA,自制复合微生物菌剂能够提前7 d进入高温期,且最高温度可提高2~7 ℃[31];比复合菌剂F12,能够延长高温持续时间,其50 ℃以上的持续时间可延长2 d[32]

    可见,尽管固态菌剂的保存时间不同,但均能在18~19 h左右促使堆体进入高温期,随着菌剂保存时间的延长,堆体的高温持续时间略有增加,而50 ℃以上的持续时间变化不大。该固态菌剂的性能稳定,保存一段时间后依旧能使堆体快速进入高温阶段,且持续时间长,可使堆体达到无害化要求。

    图5所示,堆肥结束后,堆体中半纤维素、纤维素和木质素含量均有所降低。半纤维素最易降解,而木质素是一种高分子有机化合物,结构非常复杂[31],较难降解,因此,堆体中半纤维素降解率最高,木质素降解率最低。

    图 5  4个堆体中半纤维素、纤维素、木质素的降解率
    Figure 5.  Degradation rates of hemicellulose, cellulose and lignin in four piles

    由于添加自制复合微生物菌剂中含有芽孢杆菌,在堆肥高温阶段具有良好的活性,可有效促进木质素和纤维素的降解;优化堆体的微生物生态,可激活并促进木质纤维素降解菌的生长繁殖;且投加菌剂的堆体中高温持续时间更长,有助于促进堆体中半纤维素、纤维素和木质素的降解[33-34]。因此,与空白相比,不同保藏时间的菌剂依旧能够有效促进堆体中半纤维素、纤维素和木质素的降解。随着菌剂保存时间的延长,堆体中半纤维素降解率分别为56.93%、41.91%、49.10%;纤维素降解率分别为29.03%、27.58%、31.45%;木质素降解率分别为18.12%、12.64%、17.02%;堆体中半纤维素、纤维素和木质素的降解率呈现先下降后上升的变化规律。

    与复合微生物菌剂DN-1堆肥12 d后相比,自制复合微生物菌剂提高了半纤维素和木质素的降解率,半纤维素降解率分别提高了58.27%、16.51%、36.50%;木质素降解率分别提高了87.97%、31.12%、76.56%[35]。与复合微生物菌剂HJ相比,自制复合微生物菌剂提高了堆体中半纤维素和纤维素降解率,半纤维素降解率分别提高了244.61%、153.69%、197.22%,纤维素降解率分别提高了28.51%、22.09%、39.22%[36]。自制固态微生物菌剂具有较好的降解木质纤维素的能力。

    堆肥结束后,测定了各堆体中有机质含量、TKN、C/N、pH、含水率、蛔虫死亡率、粪大肠菌群数和GI,其结果如表6所示。

    表 6  4个堆体的堆肥产品品质
    Table 6.  Quality of composting products of four piles
    名称有机质含量/%凯氏氮/(mg·g−1)C/NpH含水率/%蛔虫死亡率/%粪大肠菌群数/(MPN·g−1)种子发芽指数/%
    CK66.30±3.3825.53±0.0615.06±0.047.95±0.1858.43±1.5684.36±0.68200±1059.72±1.02
    ZJ58.67±1.1728.64±0.1511.89±0.048.07±0.0652.97±0.6695.98±1.07485.89±0.75
    ZJ-3058.19±0.2332.47±0.0410.40±0.018.12±0.0454.84±0.3196.82±0.79991.73±1.82
    ZJ-6057.56±0.9431.55±0.1610.59±0.048.12±0.1158.28±1.3296.54±0.65489.38±0.71
     | Show Table
    DownLoad: CSV

    堆肥结束后,堆体CK、堆体ZJ、堆体ZJ-30、堆体ZJ-60中有机质含量分别为66.30%、58.67%、58.19%、57.56%,其降解率分别为24.05%、32.79%、33.34%、34.06%。投加菌剂的堆体中有机质降解率更高,这是由于其高温持续时间更长,嗜热菌活动剧烈,使得更多有机物被降解。与放线菌菌剂[33]相比,自制复合微生物菌剂提高了有机质降解率,降解率分别提高了20.55%、22.57%、25.22%。与堆肥初期(表2)相比,4个堆体中TKN即全氮含量均呈现上升趋势,添加自制复合微生物菌剂的3个堆体中全氮含量上升幅度更大。与勾云龙[37]制备的复合微生物菌剂相比,自制复合微生物菌剂中氮素含量分别提高了153.03%、255.93%、231.33%。表明自制复合微生物菌剂能够有效促进对氮素的吸收与利用,有利于堆肥产品保氮,提高堆肥产品的养分含量[12]

    采用不同保存时间的固态微生物菌剂进行好氧堆肥,所得堆肥产品的理化性质包括有机质及TKN的含量等均相差不大;蛔虫死亡率均大于95%,粪大肠菌群数均低于100 MPN·g−1,满足我国生物有机肥标准(NY 884-2012)中的生物学指标要求。同时,C/N比低于20,种子发芽指数均高于85%,完全腐熟。与常温微生物菌剂(36 d时C/N比低于20,30 d时GI高于50%)[19]相比,自制复合微生物菌剂能够缩短堆肥周期,提高堆体腐熟度。然而,由于高温持续时间不足,对照堆肥产品的卫生状况未能达到上述标准,且种子发芽指数较低。

    1)固态微生物菌剂的最佳制备条件为以腐熟物料作为载体,投加4%的海藻糖,含水率为15%。

    2)随保存时间的延长,固态微生物菌剂的性能稳定,均能在18~19 h左右促使堆体进入高温期,并有效促进堆体中半纤维素、纤维素和木质素的降解,所得堆肥产品的理化性质相差也不大,各项指标均符合我国生物有机肥标准(NY 884-2012)中的相关要求,且种子发芽指数均高于85%,完全腐熟。

    3)所得固态微生物菌剂的制备方法有助于菌剂的大规模生产与应用,具有较为重要的实践价值。

  • 图 1  EPS和SMP的提取方法

    Figure 1.  Extraction methods of EPS and SMP

    图 2  不同处理单元中SMP的组分及DOC浓度比较

    Figure 2.  Comparisons of SMP components and DOC concentrations in different treatment units

    图 3  不同处理单元中S-EPS组分比较

    Figure 3.  Comparisons of S-EPS components in different treatment units

    图 4  不同处理单元中LB-EPS及TB-EPS组分比较

    Figure 4.  Comparisons of LB-EPS and TB-EPS components in different treatment units

    图 5  不同生物处理阶段出水和SMP中铬的分布

    Figure 5.  Distributions of chromium in the effluents and SMP at different biological treatment stages

    图 6  不同生物处理阶段EPS结构层中铬的分布

    Figure 6.  Distributions of chromium in the EPS structure layer at different biological treatment stages

    表 1  实验所用活性污泥基本性质

    Table 1.  Basic properties of activated sludge in experiments

    污泥来源MLSS/(g·L−1)MLVSS/(g·L−1)pH
    水解酸化污泥6.2252.6418.8
    一级好氧污泥14.0926.6688.0
    二级好氧污泥2.551.2827.9
    污泥来源MLSS/(g·L−1)MLVSS/(g·L−1)pH
    水解酸化污泥6.2252.6418.8
    一级好氧污泥14.0926.6688.0
    二级好氧污泥2.551.2827.9
    下载: 导出CSV

    表 2  胞外聚合物成分含量与Cr分布的相关性

    Table 2.  Correlation matrix among EPS content and Cr distribution

    项目总CrDOCPS/PNPSPNEPS总量
    Pearson相关系数PPearson相关系数PPearson相关系数PPearson相关系数PPearson相关系数PPearson相关系数P
    总Cr10.4590.2520.787**0.0360.890**0.0030.2660.5640.4070.148
    DOC10.0040.9910.589*0.0270.941**00.952**0
    PS/PN10.656*0.028−0.2900.386−0.0980.740
    PS10.4630.1520.645**0.003
    PN10.949**0.000
    EPS总量1
      注:** 在 0.01水平下(双尾)显著相关;* 在 0.05 水平下(双尾)显著相关。
    项目总CrDOCPS/PNPSPNEPS总量
    Pearson相关系数PPearson相关系数PPearson相关系数PPearson相关系数PPearson相关系数PPearson相关系数P
    总Cr10.4590.2520.787**0.0360.890**0.0030.2660.5640.4070.148
    DOC10.0040.9910.589*0.0270.941**00.952**0
    PS/PN10.656*0.028−0.2900.386−0.0980.740
    PS10.4630.1520.645**0.003
    PN10.949**0.000
    EPS总量1
      注:** 在 0.01水平下(双尾)显著相关;* 在 0.05 水平下(双尾)显著相关。
    下载: 导出CSV
  • [1] 程宝箴, 杨飞, 张岚, 等. 含铬复鞣加脂废水除铬方法的研究[J]. 皮革科学与工程, 2014, 24(6): 39-43.
    [2] DABZAC P, BORDAS F, VAN H E, et al. Extraction of extracellular polymeric substances (EPS) from anaerobic granular sludges: Comparison of chemical and physical extraction protocols[J]. Applied Microbiology & Biotechnology, 2010, 85: 1589-1599.
    [3] LI W W, YU H Q. Insight into the roles of microbial extracellular polymer substances in metal biosorption[J]. Biotechnology & Bioengineering, 2014, 160: 15-23.
    [4] 魏亮亮, 王胜, 薛茂, 等. 城镇污泥胞外聚合物对重金属吸附特征及机制[J]. 哈尔滨工业大学学报, 2018, 50(8): 188-198. doi: 10.11918/j.issn.0367-6234.201803156
    [5] 郑蕾, 丁爱中, 王金生, 等. 不同组成活性污泥胞外聚合物吸附Cd2+、Zn2+特征[J]. 环境科学, 2008, 29(10): 2850-2855. doi: 10.3321/j.issn:0250-3301.2008.10.029
    [6] KANTAR C, DEMIRAY H, DOGAN N M, et al. Role of microbial extracellular polymeric substances (EPS) on chromium sorption and transport in heterogeneous subsurface soils: I. Cr(Ⅲ) complexation with EPS in aqueous solution[J]. Chemosphere, 2011, 82: 1489-1495. doi: 10.1016/j.chemosphere.2011.01.009
    [7] LASPIDOU C S, RITTMANN B E. Unified theory for extracellular polymeric substances, soluble microbial products, and active and inert biomass[J]. Water Research, 2002, 36(11): 2711-2720. doi: 10.1016/S0043-1354(01)00413-4
    [8] RITTMANN B E, BAE W, NAMKUNG E, et al. A critical evaluation of microbial product formation in biological processes[J]. Water Science Technology, 1987, 324(19): 517-528.
    [9] 樊鹏超, 曾薇, 纪兆华, 等. 城市污水厂活性污泥中胞外聚合物与工艺运行及污泥沉降性能的相关性分析[J]. 环境科学学报, 2017, 37(8): 2996-3002.
    [10] 胡小兵, 叶星, 周元凯, 等. 胞外聚合物对活性污泥吸附生活污水碳源的影响[J]. 环境科学学报, 2016, 36(11): 4062-4069.
    [11] SOPHIE C, GILLES G, MICHEL B. EPS-Me biosorption properties of extracellular polymeric substances (EPS) resulting from activated sludge according to their type: Soluble or bound[J]. Process Biochemistry, 2005, 41: 815-823.
    [12] ALASONATI E, SLAVEYKOVA V I. Effects of extraction methods on the composition and molar mass distributions of extracellular polymeric substances of the bacterium Sinorhizobium meliloti[J]. Bioresource Technology, 2012, 114: 603-609. doi: 10.1016/j.biortech.2012.03.071
    [13] 陈华, 胡以松, 王晓昌, 等. 复合式膜生物反应器中胞外聚合物提取方法综合评价[J]. 环境工程学报, 2013, 7(8): 2904-2908.
    [14] LI X Y, YANG S F. Influence of loosely bound extracellular polymeric substances (EPS) on the flocculation, sedimentation and dewaterability of activated sludge[J]. Water Research, 2007, 41: 1022-1030. doi: 10.1016/j.watres.2006.06.037
    [15] 杨丹, 刘东方, 杜丽琼, 等. 好氧颗粒污泥系统中溶解性微生物代谢产物的特征及主要组分[J]. 环境科学, 2018, 39(3): 1325-1332.
    [16] 李金璞, 张雯雯, 杨新萍. 活性污泥污水处理系统中胞外多聚物的作用及提取方法[J]. 生态学杂志, 2018, 37(9): 2825-2833.
    [17] 邹小玲, 许柯, 丁丽丽, 等. 不同状态下的同一污泥胞外聚合物提取方法研究[J]. 环境工程学报, 2010, 4(2): 436-440.
    [18] 王淑莹, 何岳兰, 李夕耀, 等. 不同活性污泥胞外聚合物提取方法优化[J]. 北京工业大学学报, 2016, 42(4): 569-576.
    [19] 孙秀玥, 唐珠, 杨新萍. 活性污泥胞外多聚物提取方法的比较[J]. 环境科学, 2018, 39(7): 3306-3313.
    [20] 陈飞. 活性污泥胞外聚合物的分层组分及微生物代谢产物特性研究[D]. 西安: 西安建筑科技大学, 2015.
    [21] LIN F, ZHU X L, LI J G, et al. Effect of extracellular polymeric substances (EPS) conditioned by combined lysozyme and cationic polyacrylamide on the dewatering performance of activated sludge[J]. Chemosphere, 2019, 235: 679-689. doi: 10.1016/j.chemosphere.2019.06.220
    [22] 刘彤. 重金属对活性污泥释放溶解性微生物产物影响的研究[D]. 西安: 西安理工大学, 2018.
    [23] AQUINO S F, STUCKEY D C. Soluble microbial products formation in anaerobic chemostats in the presence of toxic compounds[J]. Water Research, 2004, 38: 255-266. doi: 10.1016/j.watres.2003.09.031
    [24] 康福星. 水环境中微生物及其胞外聚合物与重金属作用机理研究[D]. 贵州: 贵州师范大学, 2009.
    [25] 张安龙, 周丹妮, 杜飞, 等. 生物促生剂对废纸造纸活性污泥胞外聚合物的影响[J]. 中国造纸, 2017, 36(1): 24-30. doi: 10.11980/j.issn.0254-508X.2017.01.005
    [26] SPONZA D T. Extracellular polymer substances and physicochemical properties of flocs in steady- and unsteady-state activated sludge systems[J]. Process Biochemistry, 2002, 37: 983-998. doi: 10.1016/S0032-9592(01)00306-5
    [27] 周健, 龙腾锐, 苗利利. 胞外聚合物EPS对活性污泥沉降性能的影响研究[J]. 环境科学学报, 2004, 24(4): 613-618. doi: 10.3321/j.issn:0253-2468.2004.04.009
    [28] 刘瑶. 胞外聚合物和废水中Cr的相互作用及对其厌氧生物还原的影响[D]. 大连: 大连理工大学, 2017.
    [29] 王金翠, 孙宝盛. 胞外聚合物与溶解性微生物产物的关系[J]. 环境科学与技术, 2008, 31(11): 18-20. doi: 10.3969/j.issn.1003-6504.2008.11.005
    [30] RUDD T, STERRITT R, LESTER J. Formation and conditional stability constants of complexes formed between heavy metals and bacterial extracellular polymers[J]. Water Research, 1984, 18: 379-384. doi: 10.1016/0043-1354(84)90115-5
    [31] SARRET G, MANCEAU A, SPADINI L, et al. Structural determination of Zn and Pb binding sites in Penicillium chrysogenum cell walls by EXAFS spectroscopy[J]. Environmental Science & Technology, 1998, 32: 1648-1655.
    [32] SCHLEKAT C E, DECHO A W, CHANDLER G T. Sorption of cadmium to bacterial extracellular polymeric sediment coatings under estuarine conditions[J]. Environmental Toxicology Chemistry, 1998, 17: 1867-874. doi: 10.1002/etc.5620170930
    [33] 刘轶, 周健, 刘杰, 等. 污泥脱水性能的关键影响因素研究[J]. 环境工程学报, 2013, 7(7): 2689-2693.
    [34] 朱经贺. 不同分子量的海藻酸钠与人血清白蛋白及Pb2+、Cd2+结合作用研究[D]. 烟台: 烟台大学, 2016.
  • 加载中
图( 6) 表( 2)
计量
  • 文章访问数:  4622
  • HTML全文浏览数:  4622
  • PDF下载数:  55
  • 施引文献:  0
出版历程
  • 收稿日期:  2019-09-28
  • 录用日期:  2020-02-24
  • 刊出日期:  2020-07-01
徐芝芬, 周姣, 马宏瑞, 李金城, 韦春满, 王华鹏. 制革废水处理过程中微生物代谢产物特征及铬分布的解析[J]. 环境工程学报, 2020, 14(7): 1771-1778. doi: 10.12030/j.cjee.201909159
引用本文: 徐芝芬, 周姣, 马宏瑞, 李金城, 韦春满, 王华鹏. 制革废水处理过程中微生物代谢产物特征及铬分布的解析[J]. 环境工程学报, 2020, 14(7): 1771-1778. doi: 10.12030/j.cjee.201909159
XU Zhifen, ZHOU Jiao, MA Hongrui, LI Jincheng, WEI Chunman, WANG Huapeng. Analysis of microbial metabolites characteristics and chromium distribution during tannery wastewater treatment[J]. Chinese Journal of Environmental Engineering, 2020, 14(7): 1771-1778. doi: 10.12030/j.cjee.201909159
Citation: XU Zhifen, ZHOU Jiao, MA Hongrui, LI Jincheng, WEI Chunman, WANG Huapeng. Analysis of microbial metabolites characteristics and chromium distribution during tannery wastewater treatment[J]. Chinese Journal of Environmental Engineering, 2020, 14(7): 1771-1778. doi: 10.12030/j.cjee.201909159

制革废水处理过程中微生物代谢产物特征及铬分布的解析

    通讯作者: 马宏瑞(1963—),男,博士,教授。研究方向:化工污染控制与资源化技术。E-mail:mahrxingfeng@163.cn
    作者简介: 徐芝芬(1985—),女,博士研究生。研究方向:制革废水污染物生物降解。E-mail:364018683@qq.com
  • 1. 陕西科技大学环境科学与工程学院,西安 710021
  • 2. 桂林理工大学环境科学与工程学院,桂林 541004
基金项目:
国家水体污染控制与治理科技重大专项(2017ZX07602-001);广西重点研发计划(AB16380295);广西科技攻关计划(1598016-14);候立安院士工作站能力建设项目(AD18126018);新疆重大科技专项(2016A03008-1)

摘要: 制革废水生化处理后的出水仍残留低浓度的铬,为揭示微量铬在活性污泥胞外聚合物(EPS)中的分布及胞外聚合物在生物处理过程中的转化,通过改良热提取法提取生物处理过程中EPS和SMP,测定各组分中多糖、蛋白质、总铬等含量,分析制革废水生物处理中EPS组分的特征、金属铬的分布和EPS各组分含量。结果表明:一级生物处理中EPS的蛋白质和多糖含量均逐渐降低,二级生物处理中EPS含量增加,活性污泥SMP与邻近沉淀池出水组分及溶解性有机物含量具有较强的相似性;铬在不同来源污泥EPS中的分布存在差异,污泥表面吸附及EPS对铬的络合富集、EPS的水解及代谢组分外排的行为均影响铬的迁移;通常,水体中铬首先被S-EPS吸收,经LB-EPS运输渗透至TB-EPS中储存。根据Pearson分析结果,总铬的分布与胞外聚合物中PS/PN及PS含量呈显著正相关(P<0.01)。以上研究结果可为制革废水铬排放总量控制和深度处理提供参考。

English Abstract

  • 制革废水经生化处理后尾水中通常含有0.3~1.0 mg·L−1的总铬[1],在制革废水生化剩余污泥中含有1~10 g·kg−1的总铬。活性污泥中微生物的胞外聚合物(extracellular polymeric substance, EPS)主要组分包括多糖(PS)、蛋白质(PN)和核酸等多聚物[2],因其含有大量的羧基、羟基、氨基、磷酸酯等吸附位点,能够通过离子交换、络合、电中和等作用对重金属进行有效固定 [3-4]。EPS对铬的吸附已有许多相关报道。有研究[5]认为,EPS的不同结构层、EPS含量及组分比例和外界环境均会影响重金属在EPS上的吸附。有研究[6]发现,EPS对Cr3+吸附的主要作用位点是羧基和磷酸基,并形成EPS-Cr3+配位物。

    EPS一般可分为松散附着型(loosely bound EPS,LB-EPS)、紧密黏附型(tightly bound EPS,TB-EPS)和溶解型EPS(S-EPS)[7]。LASPIDOU等[7]认为,S-EPS与溶解性微生物代谢产物(soluble microbial product,SMP)属同源物质,也是在微生物的内源呼吸过程(BAP)和基质分解过程(UAP)中产生的[8]。许多研究表明,进水基质及污泥种类均影响EPS的组成,不同层EPS上存在不同的金属吸附位点[9],不同结构层中蛋白质和多糖含量的动态变化会影响污泥的吸附速率[10],可溶性EPS具有比结合态EPS更大的质子离子交换能力[11],高度可溶性EPS-Cr3+配位化合物可导致铬在环境中的迁移和蓄积[6]

    随着我国对制革废水总铬排放总量限制指标的日益严格,探索制革生化尾水中残留铬与EPS的相互关系,特别是S-EPS对出水中总铬的影响很有必要。目前,在制革废水生物处理过程中,EPS各结构层的组分变化及金属铬离子在EPS各结构层和SMP中分布情况的研究鲜有报道。本研究在对制革废水各处理阶段的不同层EPS组分定量分析的基础上,重点围绕EPS组分变化与铬的分布规律进行了研究,为制革废水铬排放总量控制和深度处理提供参考。

  • 实验所用活性污泥及废水取自河北某制革废水处理站的主要生化处理段(水解酸化-两级好氧处理工艺),共5个采样点,分别为初沉池出水、水解酸化池污泥、一级好氧池污泥、二级好氧池污泥及二沉池出水,污泥基本性质如表1所示。水解酸化池、一级好氧池、二级好氧池的污泥沉降比(SV30)分别为30%、76%、81%。所取样品经固液分离和EPS分步提取后,储存在4 ℃冰箱中备用。

  • EPS 提取方法有物理法和化学法[12-13]。因化学法易造成铬离子的流失和形态改变,为保证EPS的结构完整性、物理化学性质的稳定及铬离子分布在EPS各结构层分布的相对准确性,本实验采取改良热提取法,从制革生化活性污泥中提取EPS溶液[14-15],控制温度≤80 ℃,并使加热时间≤60 min。该方法对铬离子在EPS各结构层的分布造成的影响较小,同时能更好地反映EPS各结构层蛋白质和多糖的相对组成[16-19]。EPS和SMP的提取方法如图1所示。

    取均匀混合的泥水混合物50 mL,在2 000 r·min−1的离心机中离心5 min 后,取上清液,然后过0.45 μm 滤膜,得到S-EPS[20],沉淀池出水过0.45 μm滤膜,得到SMP。

  • 溶解性有机碳(DOC)的测定使用德国元素分析系统公司liqui Ⅱ TOC测定仪,水样过0.45 μm滤膜,采用DOC表征SMP浓度;总铬的测定采用二苯碳酰二肼分光光度法(GB/T 7466-1987),每个样品平行测量3次,取平均值;挥发性悬浮物固体浓度(VSS)和悬浮固体浓度(SS)采用重量法测定。

    多糖(PS)采用蒽酮-硫酸法测定,以葡萄糖作为标准品;蛋白质(PN)采用考马斯亮蓝法测定,以牛血清白蛋白(BSA)作为标准品,绘制标准曲线[21];UV254采用紫外分光光度计测定。采用蛋白质与多糖之和表征SMP及EPS总量,每个样品平行测量3次,测定结果取平均值。

  • 有机物在出水SMP中的分布呈下降趋势,SMP中有机碳含量逐渐降低,各处理工段出水SMP中溶解性有机物及各组分浓度比较结果见图2。SMP中有机碳浓度用DOC表征,各水样DOC浓度与组分浓度变化趋势一致,SMP中组分对有机碳的贡献率为15%~32%。在初沉池出水DOC浓度为233.1 mg·L−1时,经水解酸化-好氧生物处理,使二沉池出水DOC降低至78.54 mg·L−1,DOC去除率为66.4%,有机碳浓度变化受进水基质影响较大。在制革废水生物处理系统中,SMP中多糖变化呈先降低后升高的趋势,一级生化SMP中蛋白质和多糖的变化趋势一致,二级生化多糖含量大幅增加,二沉池出水SMP中多糖含量与二级好氧池出水SMP相似。初沉池SMP多糖含量为12.13 mg·L−1,二沉池出水中多糖含量为18.02 mg·L−1,初沉池出水SMP蛋白质含量高达44.69 mg·L−1。通过水解酸化预处理及好氧生物处理后,二沉池出水蛋白质含量削减至3.23 mg·L−1,削减92.8%,与出水DOC的削减规律相呼应。SMP组分含量呈先降低后升高的趋势,这可能是因为二级好氧池中TB-EPS外排使SMP的组分含量升高,EPS与SMP之间相互转化造成的。杨丹等[15]的研究表明,好氧颗粒污泥中SMP随底物基质消耗而缓慢增加,当底物浓度降低时,SMP来源于微生物内源呼吸及EPS水解,这验证了SMP的产生会影响出水水质的结果。

    图3可知,水解酸化池S-EPS蛋白质含量为10.61 mg·g−1(以VSS计),一级好氧池中蛋白质含量为1.347 mg·g−1,削减87.3%,二级好氧池SMP蛋白质含量未检出;一级生化后端S-EPS多糖含量为1.003 mg·g−1,二级生化多糖含量增加至18.07 mg·g−1。初沉池SMP取自初沉池后端出水,初沉池没有明显的生物处理作用,水解酸化使大分子难生物降解物质转变为易生物降解的物质。在缺氧条件下,细菌利用外源有机物合成自身细胞,导致水解酸化池中S-EPS蛋白质组分削减幅度较大。削减部分可能主要作为微生物的营养物质被消耗掉,蛋白质可为生物处理提供氮源,进而促进微生物生长。有研究[22]发现,重金属冲击浓度增加,SMP中蛋白质产生量下降。相比市政污水生物处理过程中多糖含量随生物处理过程不断削减[17],制革污水的生物处理过程则存在多糖含量增加的趋势,这可能是微生物通过增加EPS的产量来对抗微量重金属铬(Cr3+<1.5 mg·L−1)的胁迫作用造成的。AQUINO等[23]的研究表明,在铬的存在下,细胞裂解作用增强,细胞裂解产物对SMP的积累有重要贡献。康福星[24]的研究表明,在一定浓度重金属的污染水体中,微生物能分泌大量的EPS来提高净化水体的能力。

  • 图4可知,不同污泥样品的EPS含量变化较大。结合层EPS组分含量为2.248~16.66 mg·g−1,蛋白质占比为44.9%~69.0%,多糖占比为31.0%~55.1%。水解酸化池及一级好氧池LB-EPS主要组分为蛋白质,TB-EPS中主要组分为多糖,二级好氧池LB-EPS主要组分为多糖,TB-EPS主要由蛋白质组成。由此可见,LB-EPS层随生物处理过程的推进,蛋白质随之降低,多糖含量随之升高。LB-EPS中多糖含量从高到低依次为二级好氧>水解酸化池>一级好氧,含量依次为1.893、0.975、0.430 mg·g−1;LB-EPS中蛋白质含量从高到低依次为水解酸化池>二级好氧池 >一级好氧池,含量依次为1.544、1.346、0.817 mg·g−1;TB-EPS中多糖含量依次为0.919、0.673、3.269 mg·g−1,蛋白质含量依次为0、0.328、10.16 mg·g−1。TB-EPS与细胞表面结合紧密,稳定地附着于细胞壁外,组分变化主要是由微生物细胞自身的变化而产生的,较少受外界水体的影响;LB-EPS结构松散,是微生物细胞与液相间物质交换的场所,易受微生物活性及外界水体的影响。

    樊鹏超等[9]对采用A2O工艺的城市污水处理厂研究发现,EPS中蛋白质含量高于多糖,蛋白质为6.17~43.18 mg·g−1,多糖为0.970~6.76 mg·g−1。张安龙等[25]对采用氧化沟工艺的造纸厂废水处理厂研究发现,EPS中蛋白质为47.8~124 mg·g−1,多糖为13.3~25.2 mg·g−1 。SPONZA [26]发现,皮革、染料、化学3种工业废水活性污泥EPS中蛋白质含量为24~48 mg·g−1 。在生物处理前端,进水中有机物浓度较高,污染负荷大,从而抑制EPS分泌,EPS总量为5.68 mg·g−1。SPONZA[26]研究发现,化学品、染料和皮革工业EPS中蛋白质含量低的原因是蛋白质与进水中高COD含量物质的复杂作用。在生物处理末端,结合层EPS总量大幅度增加,TB-EPS含量增幅为93%,LB-EPS增幅为22.2%。由于二级好氧处理阶段污泥负荷小,底物基质浓度较低,微生物可利用基质减少,微生物进入内源呼吸阶段,细胞的分泌及自溶使污泥中EPS含量增大[15]。胡小兵等[10]采用加热法,分层提取污水厂好氧池的活性污泥EPS,发现内层EPS的PN/PS含量高于外层EPS。周健等[27]发现,EPS及多糖含量与污泥负荷呈负相关,这与本研究中的结果相一致。

  • 图5可知,各处理单元的铬含量存在一定差异。以初沉池出水中铬含量为初始参照值,初沉池及水解酸化池出水经0.45 μm过滤,铬含量大幅度下降。这说明生化处理前,铬主要吸附在固体悬浮物上,大尺寸悬浮物经自然沉降附着于EPS表层,Cr3+沉淀分布在细胞表面或与EPS络合存在于微生物表面,少部分Cr3+进入细胞内部[28]。初沉池出水SMP中铬浓度为0.061 mg·L−1,经生物处理,二沉池出水SMP中铬浓度为0.099 mg·L−1,出水端中铬浓度略高于进水端。每个样品平行测定3次,基本排除了测量误差,故出水中增加的铬浓度可能是污泥中吸附累积的铬重新被释放,络合态EPS-Cr随EPS水解进入液相导致的。这与王金翠等[29]的研究结果相似,即EPS与SMP之间存在相互转化和吸附与被吸附的关系。

    图6所示,水解酸化池LB-EPS、二级好氧池TB-EPS中铬含量分布较多,分别为0.491 9、1.251 mg·g−1,这可能与各处理单元的污泥负荷、溶解氧含量、EPS含量等因素有关。一级好氧池中铬含量分布均很低,主要是由于该池活性污泥浓度较高造成的,MLVSS高达6.668 g·L−1(表1)。二级好氧池TB-EPS中铬含量高,主要是由于胞外聚合物结合层对Cr3+的络合能力较强造成的。这与胡小兵等[10] 的研究结果一致,即各层EPS对污泥吸附污染物的作用机制是:有机污染物通过S-EPS的吸附,经LB-EPS传输渗透到TB-EPS中储存,多糖含量的增加有利于SMP和TB-EPS对污染物的吸附。重金属铬在各池S-EPS中分布较少,主要是由于S-EPS表面结构较为光滑,结构松散,对重金属铬具有一定的吸附作用,但固定作用较弱。

    利用SPSS软件,对EPS各组分的蛋白质多糖含量与DOC、总铬分布情况和多糖蛋白质进行Pearson相关性分析,结果如表2所示。从Pearson相关系数及相伴概率可知,总铬的分布与胞外聚合物中PS/PN (Pearson相关系数为0.787, P=0.036)、与PS呈显著正相关(Pearson相关系数为0.890,P=0.003);DOC与PN的含量呈显著正相关(Pearson相关系数为0.941,P=0.000);EPS总含量对污泥中总铬的分布影响不显著。

    已有研究[30-32]表明,EPS中多糖比蛋白质更容易吸附金属离子,这与多糖和蛋白质中对金属离子的活性吸附点数量和吸附点位活性大小有关。EPS中多糖是络合Cr离子的主要组分,金属离子可能首先占据多糖中的活性吸附点,待饱和后再与蛋白质中的活性吸附点位结合。刘轶等[33]认为,对活性污泥脱水性能起决定作用的不是 EPS 总量而是其各组分间的比例,EPS各组分比例可影响污泥絮体表面的离子化多聚物含量和EPS亲疏水性质。PS/PN越大,污泥EPS的Zeta电位越小,对重金属阳离子的络合作用就越强,这与本研究结果一致。朱经贺[34]发现,海藻酸钠(多糖)的加入会使重金属离子(Pb2+、Cd2+)从人血清白蛋白(HSA)上脱离,并与海藻酸钠形成络合物。这可能是由于EPS中蛋白质与多糖发生静电相互作用及反应基团间的相互干扰所致[5],说明蛋白质和多糖在EPS各组分中所占比例是影响金属铬分布的重要因素。

  • 1)在制革污水生物处理过程中,EPS各组分中主要成分存在蛋白质与多糖的交替变化,结合层EPS组分含量为2.248~16.66 mg·g−1。在一级生物处理中,多糖及蛋白质含量均降低;在二级生物处理中,污泥负荷小,EPS含量显著升高,主要表现在蛋白质含量增长,SMP中多糖含量大幅升高。这一结果表明生物处理中胞外聚合物存在由内向外排放的过程。

    2)在制革废水生物处理中,S-EPS吸附废水中Cr3+,经LB-EPS传输渗透到TB-EPS中储存,吸附饱和或外界条件变动会引起附着于细胞表面的铬重新被释放,EPS-Cr络合物也可能由于胞外聚合物外排过程进入液相,从而影响出水水质。

    3)根据Pearson相关性分析结果,总铬与胞外聚合物中PS/PN呈显著正相关(P<0.05),总铬与PS呈显著正相关(P<0.01),DOC与PN的含量呈显著正相关(P<0.01)。这说明EPS中的不同组分含量对Cr的结合能力不同,证实了PS/PN对铬的络合起关键作用。

参考文献 (34)

返回顶部

目录

/

返回文章
返回