-
锌在金属消耗排行中占第5位,仅次于铁、铝、铜、锰。锌的用途广泛,锌能与多种有色金属形成合金,是经济建设不可或缺的有色金属[1]。目前,我国的锌合金生产主要采用火法冶炼,在冶炼过程中,为了除去高温状态下锌合金表面生成的氧化物,提高纯度,采用加入大量氯化铵晶体的方法[2]。但是,氯化铵在高温下产生大量白色烟雾,造成严重的环境污染。
氯化铵在100 ℃开始挥发,在328 ℃分解成NH3和HCI,而NH3和HCI在空气中遇冷又重新化合成氯化铵,形成白烟。在氯化铵白烟中既含有颗粒物又含有气态污染物,且烟气中的氯化铵微粒多属于微细颗粒物。何益波等[3-4]采样并测出白烟中的颗粒物平均粒径分布在1 μm以下,重量轻,不易下沉,也不易溶于水。在烟气处理设备中,只有湿式洗涤器能够同时去除烟气中的微细颗粒物和气态污染物[5-7],而作为湿式洗涤器的填料塔具有结构简单、气液接触面积大、运行可靠等明显优势,在烟气脱硫、脱黑等工业废气净化方面发挥了重要作用[8-10]。
通常,传统的填料塔采用顶部喷淋方式,这存在较严重的水雾排放问题[11-15],须在喷淋上部另加除雾器,进而增加了设备投资和能耗。为此,在研究氯化铵微粒净化中,提出了一种底喷式填料塔。烟气先与喷淋液滴接触,进行初净化,较大水滴落入底部水箱,气流携带细水雾,经过填料层过滤,不仅增强了颗粒物净化效果,而且减少水雾排放。同时,润湿的填料表面有利于增强填料的吸附作用,提高二次净化效果。所以,底喷式填料塔既可去除微细颗粒物,又能有效控制水雾排放。
虽然使用纯水作为洗涤液的成本较低,但对微细颗粒物降尘效果较差[16]。为了降低水的表面张力,增加颗粒物的润湿性,有研究[17-18]表明,化学抑尘是一种新颖且效率高的粉尘防治办法。而大部分的抑尘剂均添加了阴离子表面活性剂和非离子表面活性剂[19],表面活性剂的添加会进一步提升对微细颗粒物的脱除效率。
本研究分别选用SDBS(阴离子型)、AEO-9(非离子型)、A-7(非离子型)配制成洗涤液,采用底喷填料塔净化氯化铵微粒,通过对比研究,筛选出较为理想的表面活性剂,不仅提高了微细颗粒物的脱除效率,且废水的生物降解性好,对环境没有二次污染,为细颗粒物的高效净化提供参考。
表面活性剂底喷填料塔的氯化铵微粒脱除增效作用
Enhancement effect of ammonium chloride particles removal efficiency of bottom spray packed tower based on surfactant
-
摘要: 为高效去除微细颗粒物和减少水雾排放,设计了一种底喷式填料塔,利用表面活性剂能降低水的表面张力的原理,对比分析饮用水、SDBS、AEO-9、A-7对粒径小于1 μm的氯化铵微粒的净化效果。结果表明,当底喷填料塔入口氯化铵微粒质量浓度为124.9~194.3 mg·m−3时,饮用水洗涤液的微粒脱除效率仅在40%左右,出口氯化铵微粒质量浓度>70 mg·m−3;当采用SDBS和AEO-9表面活性剂洗涤液后,微粒脱除效率大幅提高。AEO-9的提效作用较明显,当AEO-9浓度增至0.004%时,脱除效率达到74.8%,氯化铵微粒出口浓度为26.5 mg·m−3;当采用浓度为0.3%的A-7洗涤液时,脱除效率为89%,此时氯化铵微粒出口浓度仅为15 mg·m−3。通过分析可知,表面活性剂洗涤液对微细颗粒物的脱除有提效作用。Abstract: In order to efficiently remove fine particles and reduce water mist emissions, a bottom spray type packed tower was designed. According to the principle of reducing water surface tension with the surfactant, the purification effects of drinking water, SDBS, AEO-9, A-7 on ammonium chloride particles with particle size less than 1 μm were compared and analyzed. The results showed that when the mass concentration of ammonium chloride particles at the inlet of the bottom spray packed column was 124.9~194.3 mg·m−3, the particle removal efficiency by the drinking water washing liquid was only about 40%, and the mass concentration of the ammonium chloride particles at the outlet was higher than 70 mg·m−3. When SDBS or AEO-9 surfactant washing liquid was used, the particle removal efficiency was greatly improved. The enhancement effect of efficiency by AEO-9 was more obvious. When the concentration of AEO-9 increased up to 0.004%, the removal efficiency reached 74.8%, and the concentration of the ammonium chloride particles at the outlet was 26.5 mg·m−3. When A-7 washing liquid with concentration 0.3% was used, the removal efficiency was 89%, and the concentration of the ammonium chloride particles at the outlet was only 15 mg·m−3. Through above analysis, the surfactant washing liquid had an enhancement effect on the removal of fine particles.
-
Key words:
- ammonium chloride particles /
- surfactant /
- bottom spray /
- packed tower /
- removal efficiency
-
表 1 表面活性剂对氯化铵微粒脱除效率影响的实验方案
Table 1. Experimental scheme of the effect of surfactant on the removal efficiency of ammonium chloride particles
表面活性剂名称 洗涤液浓度/% 进口浓度/(mg·m−3) 入口风速/(m·s−1) 液气比/(L·m−3) 第1组 第2组 第3组 第4组 SDBS 0.005 0.01 0.02 0.04 124.9~194.3 3.4 2.2 AEO-9 0.001 0.002 0.003 0.004 124.9~194.3 3.4 2.2 A-7 0.1 0.2 0.3 0.4 124.9~194.3 3.4 2.2 表 2 饮用水作洗涤液的氯化铵微粒脱除效率
Table 2. Removal efficiency of the ammonium chloride particles by drinking water washing liquid
实验次数 脱除效率/% 出口浓度/(mg·m−3) 1 39.6 77.1 2 41.64 73.5 3 42.7 71.2 4 47.9 71.6 5 38.8 75.3 6 39.2 76.8 表 3 不同浓度表面活性剂的洗涤液的氯化铵微粒脱除效率的指数函数参数
Table 3. Exponential function parameters of the removal efficiency of ammonium chloride particles by washing liquids with different concentrations of surfactant
待定系数 SDBS AEO-9 A-7 A1 56.997 29 77.962 41 100 A2 14.692 16 36.642 17 61.463 64 k 131.918 685.798 88 4.371 55 -
[1] 张启富. 中国锌和锌合金镀层钢板的发展和展望[N]. 世界金属导报, 2013-12-10(B4). [2] 张海龙. 锌合金工业白烟治理的实验研究[J]. 制冷与空调, 2016, 30(5): 611-614. [3] HE Y B. The experimental study on white smoke treatment in zinc alloy industrial[J]. Industrial Safety and Environmental Protection, 2006, 32(6): 1-3. [4] 何益波. 锌合金白烟治理的试验研究[D]. 长沙: 湖南大学, 2007. [5] HAK-JOON K, BANGWOO H, CHANG-GYU W, et al. NOx removal performance of a wet reduction scrubber combined with oxidation by an indirect DBD plasma for semiconductor manufacturing industries[J]. IEEE Transactions on Industry Applications, 2018, 54(6): 6401-6407. doi: 10.1109/TIA.2018.2853113 [6] MANISHA B, HAMMAD S, SUBHRAJIT M, et al. Design of self priming venturi scrubber for the simultaneous abatement of HCI gas and particulate matter from the flue gas[J]. Chemical Engineering Research and Design, 2019, 150: 311-319. doi: 10.1016/j.cherd.2019.08.005 [7] ABDULWAHID A A, SITU R, BROWN R J. Underground diesel exhaust wet scrubbers: Current status and future prospects[J]. Energies, 2018, 11(11): 1-22. doi: 10.3390/en11113006 [8] HUANG Z C. Study on the dust removal and desulfuration equipment with wet method for ceramic industrial spray drying tower[J]. Advanced Materials Research, 2011, 347-353: 1272-1275. doi: 10.4028/www.scientific.net/AMR.347-353.1272 [9] KIRAN N B, MUTHUKUMAR P, BHATTACHARYYA C. Thermal modelling and parametric investigations on coupled heat and mass transfer processes occurred in a packed tower[J]. Heat and Mass Transfer, 2019, 55(3): 627-644. doi: 10.1007/s00231-018-2440-1 [10] 付加, 祁贵生, 刘有智, 等. 错流旋转填料床脱除细颗粒物研究[J]. 化工进展, 2015, 34(3): 680-683. [11] 吕扬, 董勇, 田路泞, 等. 燃煤电厂湿烟气的除湿特性[J]. 化工学报, 2017, 68(9): 3558-3564. [12] WENG W G, ZHANG J, LI C J. Origin and solution of the “gypsum rain” problem of limestone-gypsum WFGD system[J]. Chemical Industry & Engineering Progress, 2015, 34(1): 239-244. [13] 叶毅科, 惠润堂, 杨爱勇, 等. 燃煤电厂湿烟羽治理技术研究[J]. 电力科技与环保, 2017, 33(4): 32-35. doi: 10.3969/j.issn.1674-8069.2017.04.009 [14] 罗丹丹, 杨红, 高志远, 等. 湿法脱硫烟气带水形成机理及防治措施[J]. 化工装备技术, 2016, 37(3): 24-26. [15] 张泽玉, 任庚坡, 严红, 等. “烟塔合一”湿法脱硫工艺中烟囱飘雨的成因分析[J]. 上海节能, 2017(10): 602-607. [16] WEI Y, HOEKMAN S K. Dust suppression with glycerin from biodiesel production: A review[J]. Journal of Environmental Protection, 2012, 3(2): 237-249. [17] 吴超. 化学抑尘[M]. 长沙: 中南大学出版社, 2003. [18] LIU W, CHENG W M, YU Y B, et al. Experimental study on dust suppression performance of surfactant[J]. Safety in Coal Mines, 2012, 43(12): 23-26. [19] 周杨鑫. 伞形罩除尘器表面活性剂法净化黑烟的研究[D]. 长沙: 湖南大学, 2010. [20] 韩香玉, 程金明, 张海平. 塔式湿法脱硫的工艺比较[J]. 电力环境保护, 2006(3): 26-28. [21] 周杨鑫, 李彩亭, 路培, 等. 添加剂和湿法除尘主要参数对炭黑去除效率的影响[J]. 环境科学学报, 2010, 30(12): 2399-2404. [22] 环保部. 环保部公布《铸造工业大气污染物排放标准(征求意见稿)》[J]. 铸造, 2018, 67(3): 285-286.