-
膜法水处理技术因其具有选择性好、适应性强和能耗低等优点而被广泛应用,但膜污染问题伴随着膜技术的应用也随之而来[1-3]。膜污染是在过滤过程中,通过对水中悬浮颗粒物、胶体,溶解性有机物的截留、吸附、沉积作用导致膜渗透性降低的现象,从而造成膜通量衰减,使用寿命降低和运行成本增加,严重影响了膜性能的发挥[4-7]。膜污染是无法避免的,如何能有效的缓解膜污染成为了一个研究热点[8-9]。
近年来,电辅助抗膜污染技术受到了广泛的关注,该技术是在电辅助条件下通过静电排斥、电润湿、电化学氧化等功能降低膜与污染物之间的相互作用来减缓膜污染[10-11]。SUN等[12]报道了通过电化学还原作用产生氢气泡减少污染物附着,通过电化学氧化降解膜表面污染,通过电泳湍流再生膜表面等多种电辅助效应协同抗膜污染,取得了较好的抗膜污染效果。SUN等[13]利用电辅助絮凝不但减缓了膜污染,还增强了膜对有机分子的去除率。WERNER等[14]利用电化学还原产生低浓度双氧水,阻止细菌黏附膜面,从而延缓膜污染。
电辅助抗膜污染技术具有高效、简单、无需外加药剂等优点,为缓解膜污染提供了新的方向。电辅助抗膜污染技术的关键是导电膜,目前导电膜主要采用纳米碳材料或者金属材料制备。制备的导电膜存在着诸多问题:通过单纯纳米碳材料组装制备的导电膜机械强度差,制备工艺复杂[15];通过金属材料制备的导电膜稳定性差,制备工艺复杂制备成本昂贵[16-17]。目前,寻找一种稳定性好、机械强度高、制备工艺简单能大规模生产的导电膜成为了影响电辅助抗膜污染技术应用的关键因素。
本研究通过真空抽滤交联技术制备了具有导电性能的CNT-PVDF复合中空纤维膜,并考察了该复合中空纤维膜的结构形态、稳定性和机械强度,通过调控孔径、电导率等因素对导电复合中空纤维膜的制备工艺进行了优化,且研究了模拟污水和实际污水的电辅助膜过滤抗膜污染的性能,为新型导电膜的发展和抗膜污染研究提供参考。
CNT-PVDF复合中空纤维膜的制备及其电辅助抗膜污染性能
Preparation of CNT-PVDF composite hollow fiber membrane and its anti-fouling performance with electro-assistance
-
摘要: 电辅助膜过滤是减缓膜污染的有效方法,但是受限于缺乏稳定性好、机械强度高、制备工艺简单的导电膜。通过在PVDF膜表面真空抽滤CNT制备得到了导电的碳纳米管-聚偏氟乙烯(CNT-PVDF)复合中空纤维膜,然后利用酸化CNT表面羧基与聚乙烯醇的羟基发生交联反应来固定CNT,以提高导电功能层的稳定性。抗污染实验结果表明:单纯膜过滤在5个运行周期内的膜通量衰减72%,反冲洗再生后膜通量为初始通量的58%;而在电辅助下(2 V电压,膜作为阴极),静电排斥作用可以有效降低膜通量衰减速度,减缓膜污染程度,5个运行周期内的膜通量衰减均小于10%,反冲洗再生时能完全恢复膜初始通量。以上研究结果可为推进电辅助缓解膜污染技术的实际应用提供参考。
-
关键词:
- 中空纤维膜 /
- 碳纳米管-聚偏氟乙烯 /
- 交联 /
- 电辅助 /
- 抗膜污染
Abstract: Electro-assisted membrane filtration is an effective method to mitigate membrane fouling, but it is limited by the lack of conductive membrane which possesses high stability, high mechanical strength and simple preparation process. In this study, the conductive carbon nanotube-polyvinylidene fluoride (CNT-PVDF) composite hollow fiber membrane was prepared by vacuum-filtrating CNT on the PVDF support layer. Then a crosslink reaction occurred between the carboxyl groups on the surface of acidified CNT and the hydroxyl group of crosslinking agent PVA to enhance the stability of the conductive functional layer. The result of antifouling experiment showed that the flux of single membrane filtration decreased by 72% during five operation cycles, and the membrane flux after regeneration only recovered 58% of the initial flux. However, the electrostatic repulsion could effectively slow down the decline speed of membrane flux and mitigate the membrane fouling under the condition of −2 V electro-assistance. The flux decline was less than 10% during five operation cycles. And the membrane flux could be completely recovered after backwash regeneration. The above results provide reference for the practical application of electric-assisted anti-fouling technology.-
Key words:
- hollow fiber membrane /
- CNT-PVDF /
- crosslinking /
- electro-assistance /
- anti-fouling
-
-
[1] PENDERGAST M T M, HOEK E M V. A review of water treatment membrane nanotechnologies[J]. Energy & Environmental Science, 2011, 4: 1946-1971. [2] BABEL S, TAKIZAWA S. Microfiltration membrane fouling and cake behavior during algal filtration[J]. Desalination, 2010, 261: 46-51. doi: 10.1016/j.desal.2010.05.038 [3] KATSOUFIDOU K S, SIOUTOPOULOS D C, YIANTSIOS S G, et al. UF membrane fouling by mixtures of humic acids and sodium alginate: Fouling mechanisms and reversibility[J]. Desalination, 2010, 264: 220-227. doi: 10.1016/j.desal.2010.08.017 [4] LIN C, GU Y S, CAO C Q, et al. Performance of a submerged anaerobic membrane bioreactor with forward osmosis membrane for low-strength wastewater treatment[J]. Water Research, 2014, 50: 114-123. doi: 10.1016/j.watres.2013.12.009 [5] YAMAMURA H, OKIMOTO K, KIMURA K, et al. Hydrophilic fraction of natural organic matter causing irreversible fouling of microfiltration and ultrafiltration membranes[J]. Water Research, 2014, 54: 123-136. doi: 10.1016/j.watres.2014.01.024 [6] TANG S J, WANG Z W, WU Z C, et al. Role of dissolved organic matters (DOM) in membrane fouling of membrane bioreactors for municipal wastewater treatment[J]. Journal of Hazardous Materials, 2010, 178: 377-384. doi: 10.1016/j.jhazmat.2010.01.090 [7] DREWS A. Membrane fouling in membrane bioreactors-characterisation, contradictions, cause and cures[J]. Journal of Membrane Science, 2010, 363: 1-28. doi: 10.1016/j.memsci.2010.06.046 [8] WEI G, LIANG H, MA J, et al. Membrane fouling control in ultrafiltration technology for drinking water production: A review[J]. Desalination, 2011, 272: 1-8. doi: 10.1016/j.desal.2011.01.051 [9] HASHAIKEH R, LALIA B S, KOCHKODAN V, et al. A novel in situ membrane cleaning method using periodic electrolysis[J]. Journal of Membrane Science, 2014, 471: 149-154. doi: 10.1016/j.memsci.2014.08.017 [10] HUANG J, WANG Z W, ZHANG J Y, et al. A novel composite conductive microfiltration membrane and its anti-fouling performance with an external electric field in membrane bioreactors[J]. Scientific Reports, 2015, 5: 9268. doi: 10.1038/srep09268 [11] KIM W T, CHO Y I, BAI C. Effect of electronic anti-fouling treatment on fouling mitigation with circulating cooling-tower water[J]. International Communications in Heat and Mass Transfer, 2001, 28: 671-680. doi: 10.1016/S0735-1933(01)00271-8 [12] SUN X H, WU J, CHEN Z Q, et al. Fouling characteristics and electrochemical recovery of carbon nanotube membranes[J]. Advanced Functional Materials, 2013, 23: 1500-1506. doi: 10.1002/adfm.201201265 [13] SUN J Q, HU C Z, TONG T Z, et al. Performance and mechanisms of ultrafiltration membrane fouling mitigation by coupling coagulation and applied electric field in a novel electrocoagulation membrane reactor[J]. Environmental Science & Technology, 2017, 51: 8544-8551. [14] WERNER C M, KATURI K P, HARI A R, et al. Graphene-coated hollow fiber membrane as the cathode in anaerobic electrochemical membrane bioreactors: Effect of configuration and applied voltage on performance and membrane fouling[J]. Environmental Science & Technology, 2016, 50: 4439-4447. [15] RONEN A, DUAN W, WHEELDON I, et al. Microbial attachment inhibition through low-voltage electrochemical reactions on electrically conducting membranes[J]. Environmental Science & Technology, 2015, 49: 12741-12750. [16] ZAKY A M, CHAPLIN B P. Mechanism of p-substituted phenol oxidation at a Ti4O7 reactive electrochemical membrane[J]. Environmental Science & Technology, 2014, 48: 5857-5867. [17] ZAKY A M, CHAPLIN B P. Porous substoichiometric TiO2 anodes as reactive electrochemical membranes for water treatment[J]. Environmental Science & Technology, 2013, 47: 6554-6563.