-
近年来,膜技术已广泛应用于海水淡化、给水处理、污水深度处理等领域,而膜污染仍然是制约膜技术进一步发展的重大挑战之一。膜表面结垢使渗透通量降低[1],导致了更高的能量需求和运行成本[2-3],须不断进行清洗,进而减少膜的使用寿命。膜污染是由膜孔隙及膜面上微生物、胶体、溶质和细胞碎片的不良沉积和积聚引起的[4-5],尽管通过膜改性等防污性能的改善可以一定程度上减缓膜污染,但膜渗透性的增强效果有限[6-7]。
微生物胞外聚合物(extracellular polymeric substances,EPS)被认为是造成膜生物反应器膜污染的关键物质[8]。EPS组成非常复杂,主要由大分子有机物组成,如多聚糖类、蛋白类和核酸等,其表面具有大量的活性官能团和疏水区域,具有极强的吸附和络合能力。在膜污染过程中,EPS会与其他胶体物质在膜表面积累形成致密的胶体层[9-10],因此,EPS的结构和特性会显著影响膜污染的程度。最初研究人员[8-9]通过提取实际EPS来研究EPS的主要组分对膜污染的影响,但由于提取EPS耗时长、效率低且不同提取方法结果不统一,因此,改用模拟EPS溶液(蛋白质、多糖、腐殖酸或其组合)来开展膜污染机理等方面的研究工作。实际EPS和模拟EPS溶液的差异随着研究的深入逐渐开始得到关注,目前公开的报道较少。JIANG等[11]研究了EPS与海藻酸钠在胶体性质上的差异,但是实际EPS与二元甚至多元模拟溶液之间的差异尚不清楚,因此,探究实际EPS和模拟EPS溶液之间的区别具有重要意义。
有研究[12-14]表明,二价阳离子与EPS密切相关,阳离子会桥联EPS中带负电荷的官能团,从而增加EPS和悬浮颗粒间的初始吸附,有助于聚集和稳定生物聚合物,导致胶体和聚合物尺寸增加,其中最常见的阳离子为Ca2+。已有研究[15]表明,Ca2+的存在可显著增加从芽孢杆菌、假单胞菌、沙雷氏菌和耶尔森氏菌等菌种中提取的EPS的絮凝能力,表明Ca2+的存在会对絮凝作用产生影响,从而影响膜的过滤效果。目前,针对二价阳离子,特别是Ca2+存在下实际EPS和模拟EPS的研究较为广泛,但关于对这两者在Ca2+存在下的差异研究却鲜有报道。本研究采用牛血清白蛋白(bovine serum albumin,BSA)和海藻酸钠(sodium alginate,SA)的组合作为模拟溶液,与实际提取的EPS在Ca2+存在的条件下进行比较,采用多种测试分析手段比较两者的粒径分布、官能团、流变特性以及膜污染行为,以期深入认识实际EPS与模拟EPS的差异,旨在探究模拟EPS能否真正替代实际EPS,从而为膜生物反应器污染物质的模拟研究提供理论依据,为膜污染过程中胞外聚合物及其机理研究提供参考。
钙离子存在下胞外聚合物及其模拟溶液在膜污染中的差异
Differences of extracellular polymeric substances (EPS) and model solution with regard to membrane fouling in the presence of Ca2+
-
摘要: 针对膜生物反应器膜污染的问题,为探究模拟物质替代实际物质的可行性,以胞外聚合物(EPS)及其模拟溶液(BSA+SA)为研究对象,对比了钙离子(Ca2+)存在下胞外聚合物及其模拟溶液在膜污染中的差异,考察了EPS-Ca2+和BSA+SA-Ca2+在粒径分布、官能团、流变特性和膜污染行为等方面的差异。结果表明:Ca2+使得溶液粒径变大,且EPS-Ca2+的平均粒径大于BSA+SA-Ca2+的平均粒径;不同官能团与Ca2+发生作用导致红外光谱中特征峰发生偏移;BSA+SA-Ca2+水胶体系结构更稳定,随着应变的增大,胶体结构被破坏的程度较轻;在微滤过程中,相同操作条件下,BSA+SA-Ca2+的膜污染现象更为严重。进一步采用Hermia过滤模型拟合发现,EPS-Ca2+和BSA+SA-Ca2+分别对中间堵塞模型和滤饼层过滤模型的拟合程度最高。上述结果可为膜污染过程中胞外聚合物及其膜污染机理研究提供参考。Abstract: The scientific interests in membrane fouling of membrane bioreactors have increased drastically in recent years. In order to investigate the feasibility of simulating substances to replace actual substances, the present study compared the different performance of extracellular polymeric substances (EPS) and model EPS solution (BSA+SA) in the presence of Ca2+ on the membrane fouling. The differences in particle size distribution, functional groups, rheological properties and membrane fouling behaviors of EPS-Ca2+ and BSA+SA-Ca2+ were investigated systematically. The results showed that Ca2+ enlarged the particle size, and the average particle size of EPS-Ca2+ was larger than the that of BSA+SA-Ca2+. Owing to the interactions between different functional groups and Ca2+, the shift of the characteristic peaks in FT-IR spectrum occurred. By comparison of the rheological properties with EPS-Ca2+ hydrocolloid, the BSA+SA-Ca2+ hydrocolloid exhibited a more stable structure which presented a less destruction as the strain increased. In the microfiltration process, the membrane fouling of BSA+SA-Ca2+ was more serious under the same operating conditions. Through the data fitting with Hermia’s filtration model, it was found that EPS-Ca2+ and BSA+SA-Ca2+ obeyed the intermediate blocking model and the cake formation model, respectively. The results would provide basic data for the research of EPS and its membrane fouling mechanism.
-
表 1 EPS和BSA+SA添加Ca2+前后粒径分布
Table 1. Particle size distribution of EPS and BSA+SA in the absence and presence of Ca2+
溶液 粒径/nm 粒径分布/nm EPS 146±7 90~200 BSA+SA 131±16 30~200 EPS-Ca2+ 498±21 300~900 BSA+SA-Ca2+ 384±11 200~800 -
[1] WERNER C, KATURI K, ANANDA R H, et al. Graphene-coated hollow fiber membrane as the cathode in anaerobic electrochemical membrane bioreactors: Effect of configuration and applied voltage on performance and membrane fouling[J]. Environmental Science & Technology, 2016, 50(8): 4439-4447. [2] CHENG D, NGO H H, GUO W, et al. Anaerobic membrane bioreactors for antibiotic wastewater treatment: Performance and membrane fouling issues[J]. Bioresource Technology, 2018, 267: 714-724. doi: 10.1016/j.biortech.2018.07.133 [3] SMITH A L, STADLER L B, LOVE N G, et al. Perspectives on anaerobic membrane bioreactor treatment of domestic wastewater: A critical review[J]. Bioresource Technology, 2012, 122: 149-159. doi: 10.1016/j.biortech.2012.04.055 [4] MENG S J, FAN W H, LI X M, et al. Intermolecular interactions of polysaccharides in membrane fouling during microfiltration[J]. Water Research, 2018, 143: 38-46. doi: 10.1016/j.watres.2018.06.027 [5] LIN H J, PENG W, ZHANG M J, et al. A review on anaerobic membrane bioreactors: Applications, membrane fouling and future perspectives[J]. Desalination, 2013, 314: 169-188. doi: 10.1016/j.desal.2013.01.019 [6] ZHAO C Q, ZHANG G Q, XU X C, et al. Rapidly self-assembled polydopamine coating membranes with polyhexamethylene guanidine: Formation, characterization and antifouling evaluation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 512: 41-50. [7] KIM H C, CHOI B G, NOH J, et al. Electrospun nanofibrous PVDF-PMMA MF membrane in laboratory and pilot-scale study treating wastewater from Seoul Zoo[J]. Desalination, 2014, 346: 107-114. doi: 10.1016/j.desal.2014.05.005 [8] JEONG Y, KIM Y, JIN Y, et al. Comparison of filtration and treatment performance between polymeric and ceramic membranes in anaerobic membrane bioreactor treatment of domestic wastewater[J]. Separation & Purification Technology, 2018, 199: 182-188. [9] GAO W J, QU X, LEUNG K T, et al. Influence of temperature and temperature shock on sludge properties, cake layer structure, and membrane fouling in a submerged anaerobic membrane bioreactor[J]. Journal of Membrane Science, 2012, 421: 131-144. [10] CHEN J R, ZHANG M J, LI F Q, et al. Membrane fouling in a membrane bioreactor: High filtration resistance of gel layer and its underlying mechanism[J]. Water Research, 2016, 102: 82-89. doi: 10.1016/j.watres.2016.06.028 [11] JIANG J K, MU Y, YU H Q. Differences in the colloid properties of sodium alginate and polysaccharides in extracellular polymeric substances with regard to membrane fouling[J]. Journal of Colloid and Interface Science, 2019, 535: 318-324. doi: 10.1016/j.jcis.2018.10.002 [12] MORE T T, YAN S, HOANG N V, et al. Bacterial polymer production using pre-treated sludge as raw material and its flocculation and dewatering potential[J]. Bioresource Technology, 2012, 121: 425-431. doi: 10.1016/j.biortech.2012.06.075 [13] KIM I S, JANG N. The effect of calcium on the membrane biofouling in the membrane bioreactor (MBR)[J]. Water Research, 2006, 40(14): 2756-2764. doi: 10.1016/j.watres.2006.03.036 [14] CAO D Q, SONG X, FANG X M, et al. Membrane filtration-based recovery of extracellular polymer substances from excess sludge and analysis of their heavy metal ion adsorption properties[J]. Chemical Engineering Journal, 2018, 354: 866-874. doi: 10.1016/j.cej.2018.08.121 [15] BALA S S, YAN S, TYAGI R D, et al. Extracellular polymeric substances (EPS) producing bacterial strains of municipal wastewater sludge: Isolation, molecular identification, EPS characterization and performance for sludge settling and dewatering[J]. Water Research, 2010, 44(7): 2253-2266. doi: 10.1016/j.watres.2009.12.046 [16] FROLUND B, PALMGREN R, KEIDING K, et al. Extraction of extracellular polymers from activated sludge using a cation exchange resin[J]. Water Research, 1996, 30(8): 1749-1758. doi: 10.1016/0043-1354(95)00323-1 [17] FROLUND B, GRIEBE T, NIELSEN P H. Enzymatic activity in the activated-sludge floc matrix[J]. Applied Microbiology & Biotechnology, 1995, 43(4): 755-761. [18] HERMIA J. Constant pressure blocking filtration law application to powder-law non-newtonian fluid[J]. Transinstchemeng, 1982, 60(3): 183-187. [19] LEE S, ELIMELECH M. Relating organic fouling of reverse osmosis membranes to intermolecular adhesion forces[J]. Environmental Science & Technology, 2006, 40(3): 980-987. [20] RENBI B, LEOW H F. Microfiltration of activated sludge wastewater: The effect of system operation parameters[J]. Separation & Purification Technology, 2002, 29(2): 189-198. [21] 李方, 吴亮, 杨波, 等. 盐类对模拟胞外聚合物(EPS)膜污染的影响[J]. 环境工程学报, 2014, 8(3): 839-844. [22] 程战利, 武照远, 郭安, 等. A/O的SBR系统中不同方法提取EPS的效果分析[J]. 环境科学与技术, 2015, 38(12Q): 149-153. [23] YANG F L, SHI B Q, MENG F G, et al. Membrane fouling behavior during filtration of sludge supernatant[J]. Environmental Progress & Sustainable Energy, 2010, 26(1): 86-93. [24] GRANT G T, MORRIS E R, REES D A, et al. Biological interactions between polysaccharides and divalent cations: The egg-box model[J]. FEBS Letters, 1973, 32(1): 195-198. doi: 10.1016/0014-5793(73)80770-7 [25] SARTORI C, FINCH D S, RALPH B, et al. Determination of the cation content of alginate thin films by FT-IR spectroscopy[J]. Polymer, 1997, 38(1): 43-51. doi: 10.1016/S0032-3861(96)00458-2 [26] SAJJAD M, KIM K S. Studies on the interactions of Ca2+ and Mg2+ with EPS and their role in determining the physicochemical characteristics of granular sludges in SBR system[J]. Process Biochemistry, 2015, 50(6): 966-972. doi: 10.1016/j.procbio.2015.02.020 [27] 张亚琼, 俞怡晨, 陆轶业, 等. 钙离子存在下海藻酸盐稀溶液的粘度性质[J]. 应用化学, 2006, 23(11): 1259-1263. doi: 10.3969/j.issn.1000-0518.2006.11.016 [28] SOBECK D C, HIGGINS M J. Examination of three theories for mechanisms of cation-induced bioflocculation[J]. Water Research, 2002, 36(3): 527-538. doi: 10.1016/S0043-1354(01)00254-8 [29] 余智勇, 文湘华. 厌氧膜生物反应器中亲疏水性有机物的膜污染特征[J]. 中国环境科学, 2018, 38(7): 2471-2476. doi: 10.3969/j.issn.1000-6923.2018.07.010