-
城市河道受纳了城市人为活动产生的绝大部分污染物,是重要的纳污渠道[1-2]。排放入水中的氮磷营养物质经过吸附、离子交换和微生物等作用蓄积在河道底泥中,当外界环境发生变化时,这部分营养物质容易发生溶解、再悬浮等作用而释放至水体,造成水体的富营养化[3-4]。在此过程中,藻类在对营养物质氮磷的竞争中占据优势而大量繁殖,造成其他水生植物大片死亡,河流生态系统功能退化。因此,城市河道修复过程中对其内源污染的治理尤为关键。
对底泥的内源污染治理可通过移除、降解污染物质和阻止其向上覆水中释放几个途径来实现,而如底泥环保疏浚、原位覆盖、原位固定技术等常规技术均对阻止氮磷物质释放表现出一定的效果。其中底泥环保疏浚技术通过将上层富含营养盐的底泥疏挖至异位处理以达到削减内源负荷和减少营养盐释放的目的[5]。但疏浚对氮磷释放的长效抑制作用存在争议,YU等[6]研究了太湖底泥疏浚后水-沉积物界面磷的交换强度及再补给能力,结果表明疏浚后磷的释放速率比未疏浚下降了58%;LIU等[7]研究发现,底泥疏浚后产生的悬浮颗粒物吸附了大量进入湖泊的溶解性活性磷(solubility reactive phosphorus, SRP),导致巢湖入湖口磷负荷在疏浚后270 d仍和疏浚前水平相当,所以疏浚技术对磷释放的长期效果仍值得商榷。
原位覆盖技术通过在底泥表面铺设的材料实现对氮磷释放的阻滞,根据阻滞的污染物不同可选择特定的覆盖材料和覆盖厚度。GU等[8]研究发现,无纺布/活性炭组合的覆盖材料可经对颗粒物的阻挡和材料的吸附作用分别使
${\rm{NH}}_4^ + $ -N、TN和${\rm{PO}}_4^{3 - }$ -P释放削减了66.0%、54.2%和73.1%,对TP的释放削减接近100%,并且对${\rm{PO}}_4^{3 - }$ -P阻滞效果较TP偏低,是由于该材料组合成分中缺少可强烈吸附${\rm{PO}}_4^{3 - }$ 的Fe、Al位点。原位固定技术通过在污染水体投加化学物质,将污染物固定在沉积物中,阻止其向上覆水中的释放。WANG等[9]和YU等[10]的研究分别表明采用镧改性膨润土和氧纳米气泡对底泥中SRP释放具有良好的抑制作用。然而,无论是覆盖还是固定技术均向水体引入了新的污染物,对水体生态系统的健康发展仍然不利。在现有的技术条件下,寻找新型修复技术仍具有现实意义。近几年,国内兴起的原位洗脱技术[11]在北京市凉水河旧宫段的底泥修复工程中取得了良好的效果。该技术通过对表层污染底泥进行物理的机械或曝气搅动,从而使污染物质进入水相并将其用泵抽走作后续处理,同时搅动冲洗过的清洁底泥,重新覆盖形成新覆盖层。因此,该技术具有类似疏浚技术分离出部分污染物和覆盖技术的一些特点,从而对底泥中氮磷释放可能具有一定的抑制作用。为具体研究这种作用效果,本研究选择凉水河洗脱工程段和附近区域底泥作为研究对象,现场采集洗脱区与对照区域柱状样并设计了静态模拟实验,通过比较洗脱组与对照组底泥中氮磷物质的释放特征来评价该技术对研究区域底泥中氮磷释放的抑制作用,从而为该技术的工程应用提供技术支撑。
原位洗脱技术对凉水河底泥中氮、磷释放特征的影响
Effect of in-situ physical elution technology on release features of nitrogen and phosphorus in the sediment of Liangshui river
-
摘要: 为探讨新兴底泥原位修复技术—原位洗脱技术对城市河流凉水河底泥中氮、磷释放的抑制作用,于现场采集洗脱前后样品并设计室内静态模拟实验,分析了实验期间洗脱组和对照组上覆水中
${{\rm{NH}}_4^ + }$ -N、${{\rm{NO}}_3^ - }$ -N、TN、${{\rm{PO}}_4^{3 - }}$ -P、TP浓度和释放速率变化特征。结果表明:洗脱组释放第30天时,${{\rm{NH}}_4^ + }$ -N由底泥向上覆水中平均释放速率(−6.51±0.32) mg·(m2·d)−1,对应上覆水中${{\rm{NH}}_4^ + }$ -N平均浓度为0.52 mg·L−1,较对照组下降了89.4%;${{\rm{PO}}_4^{3 - }}$ -P和TP平均释放速率较对照组降低了78.1%和83.0%,上覆水中TP平均浓度为0.22 mg·L−1,较对照组下降了68.1%。原位洗脱技术对底泥中${{\rm{NH}}_4^ +} $ -N、${{\rm{PO}}_4^{3 - }}$ -P释放的抑制作用主要通过对有机氮、磷物质的削减和水-沉积物界面还原环境的改善来实现。Abstract: In this study, a new in-situ remediation technology-in-situ physical elution technology was used to conduct the inhibition experiments on nitrogen and phosphorus release from the sediment of Liangshui River. The in-situ samples before and after elution were collected, then the lab static simulation tests were also designed. Variation characteristics of contents and release rate of${\rm{NH}}_4^ + $ -N,${\rm{NO}}_3^ - $ -N, TN,${\rm{PO}}_4^{3 - }$ -P, TP in the overlying water of the elution group and control group were analyzed. The results were showed that for the elution group, the average${\rm{NH}}_4^ + $ -N release rate from sediment to the overlying water was (−6.51±0.32) mg·(m2·d)−1 on the 30th day of the release test, and the average${\rm{NH}}_4^ + $ -N concentration in the overlying water reached 0.52 mg·L−1, which decreased by 89.4% compared to the control group. The average${\rm{PO}}_4^{3 - }$ -P and TP release rates decreased by 78.1% and 83.0% compared to the control group, respectively. The average TP concentration in the overlying water reached 0.22 mg·L−1, which was 68.1% lower than the control group. The inhibition of${\rm{NH}}_4^ + $ -N and${\rm{PO}}_4^{3 - }$ -P release from the sediment by in-situ physical elution technology is mainly realized through the reduction of organic nitrogen and phosphorus substances and the amelioration of reducing environments in water-sediment interface. -
表 1 对照组与洗脱组表层底泥各项理化指标(n=4)
Table 1. Physical & chemical indexes of surface sediment in control and test groups
实验组 pH ORP/mV w(OM)/% w(TN)/(mg·kg−1) w(TP)/(mg·kg−1) 对照组 7.24±0.15 −132.7±19.2 3.61±1.26a 3 272.4±1 249.2a 2 671.9±926.4a 洗脱组 7.43±0.18 −96.0±38.0 2.18±0.25b 700.5±298.0b 1 472.2±682.9b 注:不同字母代表差异的显著性,下同。 表 2 释放期间氮、磷释放速率与环境因子的Spearman相关矩阵(n=69)
Table 2. Spearman matrix between nitrogen & phosphorus release rate and environmental factors during test (n=69)
项目 pH DO v( ${\rm{NH}}_4^ + $ -N)v( ${\rm{NO}}_3^ - $ -N)v(TN) v( ${\rm{PO}}_4^{3 - }$ -P)v(TP) pH 1 0.737** −0.535** 0.408** 0.066 −0.458** −0.338** DO 0.737** 1 −0.312** 0.102 0.121 −0.417** −0.471** v( ${\rm{NH}}_4^ + $ -N)−0.535** −0.312** 1 −0.394** 0.227 0.295* −0.162 v( ${\rm{NO}}_3^ - $ -N)0.408** 0.102 −0.394** 1 −0.025 −0.411** −0.340** v(TN) 0.066 0.121 0.227 −0.025 1 0.015 −0.049 v( ${\rm{PO}}_4^{3 - }$ -P)−0.458** −0.417** 0.295* −0.411** 0.015 1 0.545** v(TP) −0.338** −0.471** −0.162 −0.340** −0.049 0.545** 1 注:*表示P < 0.05,**表示P < 0.01。 -
[1] HOWARTH R, ANDERSON D, CHURCH T, et al. Clean coastal waters-understanding and reducing the effects of nutrient pollution[M]. Washington, DC: National Academic Press, 2000. [2] BRICKER S B, LONGSTAFF B, DENNISON W, et al. Effects of nutrient enrichment in the nation's estuaries: A decade of change[J]. Harmful Algae, 2008, 8(1): 21-32. doi: 10.1016/j.hal.2008.08.028 [3] SøNDERGAARD M, JENSEN J P, JEPPESEN E. Role of sediment and internal loading of phosphorus in shallow lakes[J]. Hydrobiologia, 2003, 506-509(1/2/3): 135-145. [4] SøNDERGAARD M, BJERRING R, JEPPESEN E. Persistent internal phosphorus loading during summer in shallow eutrophic lakes[J]. Hydrobiologia, 2013, 710(1): 95-107. doi: 10.1007/s10750-012-1091-3 [5] 濮培民, 王国祥, 胡春华, 等. 底泥疏浚能控制湖泊富营养化吗?[J]. 湖泊科学, 2000, 12(3): 269-279. doi: 10.3321/j.issn:1003-5427.2000.03.012 [6] YU J, DING S, ZHONG J, et al. Evaluation of simulated dredging to control internal phosphorus release from sediments: Focused on phosphorus transfer and resupply across the sediment-water interface[J]. Science of the Total Environment, 2017, 592: 662-673. doi: 10.1016/j.scitotenv.2017.02.219 [7] LIU C, SHAO S, SHEN Q, et al. Effects of riverine suspended particulate matter on the post-dredging increase in internal phosphorus loading across the sediment-water interface[J]. Environmental Pollution, 2016, 211: 165-172. doi: 10.1016/j.envpol.2015.12.045 [8] GU B W, LEE C G, LEE T G, et al. Evaluation of sediment capping with activated carbon and nonwoven fabric mat to interrupt nutrient release from lake sediments[J]. Science of the Total Environment, 2017, 599-600: 413-421. doi: 10.1016/j.scitotenv.2017.04.212 [9] WANG Y, DING S, WANG D, et al. Static layer: A key to immobilization of phosphorus in sediments amended with lanthanum modified bentonite (Phoslock®)[J]. Chemical Engineering Journal, 2017, 325: 49-58. doi: 10.1016/j.cej.2017.05.039 [10] YU P, WANG J, CHEN J, et al. Successful control of phosphorus release from sediments using oxygen nano-bubble-modified minerals[J]. Science of the Total Environment, 2019, 663: 654-661. doi: 10.1016/j.scitotenv.2019.01.265 [11] 杜海明.受污染水体底泥洗脱原位置换的清污设备: 201110354833.4[P]. 2013-05-01. [12] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000. [13] ROSENFELD J K. Ammonium adsorption in nearshore anoxic sediments[J]. Limnology & Oceanography, 1979, 24(2): 356-364. [14] ALEXANDRA G G, JOANNE B, FRANKLIN H M, et al. Indicators of phytoplankton response to particulate nutrient bioavailability in fresh and marine waters of the great barrier reef[J]. Science of the Total Environment, 2018, 636: 1416-1427. doi: 10.1016/j.scitotenv.2018.04.334 [15] KAISERLI A, VOUTSA D, SAMARA C, et al. Phosphorus fractionation in lake sediments: Lakes Volvi and Koronia, N. Greece[J]. Chemosphere, 2002, 46(8): 1147-1155. doi: 10.1016/S0045-6535(01)00242-9 [16] LU H, FU K, DONG T, et al. Spatial distribution of carbon, nitrogen and phosphorus within surface sediments in the lower Lancang river: Pollution assessment related to Dams[J]. Journal of Environmental Protection, 2018, 9(13): 1343-1358. doi: 10.4236/jep.2018.913083 [17] NOWLIN W H, EVARTS J L, VANNI M J. Release rates and potential fates of nitrogen and phosphorus from sediments in a eutrophic reservoir[J]. Freshwater Biology, 2005, 50(2): 301-322. doi: 10.1111/j.1365-2427.2004.01316.x [18] 陈超, 钟继承, 范成新, 等. 湖泊疏浚方式对内源释放影响的模拟研究[J]. 环境科学, 2013, 34(10): 3872-3878. [19] 于翔霏, 程宪伟, 祝惠, 等. 长春西湖沉积物氮、磷营养盐释放通量及原位覆盖控释效果模拟研究[J]. 湿地科学, 2017, 15(4): 595-600. [20] LI X, XIE Q, CHEN S, et al. Inactivation of phosphorus in the sediment of the Lake Taihu by lanthanum modified zeolite using laboratory studies[J]. Environmental Pollution, 2019, 247: 9-17. doi: 10.1016/j.envpol.2019.01.008 [21] 王光华, 赵英, 周德瑞, 等. 解磷菌的研究现状与展望[J]. 生态环境, 2003, 12(1): 96-101. doi: 10.3969/j.issn.1674-5906.2003.01.024 [22] HERBERT R A. Nitrogen cycling in coastal marine ecosystems[J]. FEMS Microbiology Reviews, 1999, 23(5): 563-590. doi: 10.1111/j.1574-6976.1999.tb00414.x [23] REITZEL K, AHLGREN J, DEBRABANDERE H, et al. Degradation rates of organic phosphorus in lake sediment[J]. Biogeochemistry, 2007, 82(1): 15-28. doi: 10.1007/s10533-006-9049-z [24] YUAN H, LIU E, WEI P, et al. Species and characteristics of organic phosphorus in surface sediments of northwest region of Taihu lake, Eastern China[J]. Clean-Soil, Air, Water, 2015, 42(11): 1518-1525. [25] 李乐, 王圣瑞, 焦立新, 等. 滇池柱状沉积物磷形态垂向变化及对释放的贡献[J]. 环境科学, 2016, 37(9): 3384-3393. [26] HU J, PENG P A, JIA G, et al. Distribution and sources of organic carbon, nitrogen and their isotopes in sediments of the subtropical Pearl River estuary and adjacent shelf, Southern China[J]. Marine Chemistry, 2006, 98(2): 274-285. [27] STRAUSS E A, MITCHELL N L, LAMBERTI G A. Factors regulating nitrification in aquatic sediments: Effects of organic carbon, nitrogen availability, and pH[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2002, 59(3): 554-563. doi: 10.1139/f02-032