多相芬顿-活性炭工艺强化饮用水消毒效果

鲁智礼, 张堯, 黄俊亮, 石宝友, 胡春, 迟晓静, 王海波. 多相芬顿-活性炭工艺强化饮用水消毒效果[J]. 环境工程学报, 2019, 13(4): 792-799. doi: 10.12030/j.cjee.201812123
引用本文: 鲁智礼, 张堯, 黄俊亮, 石宝友, 胡春, 迟晓静, 王海波. 多相芬顿-活性炭工艺强化饮用水消毒效果[J]. 环境工程学报, 2019, 13(4): 792-799. doi: 10.12030/j.cjee.201812123
LU Zhili, ZHANG Yao, HUANG Junliang, SHI Baoyou, HU Chun, CHI Xiaojing, WANG Haibo. Enhancement of potable water disinfection efficiency by heterogeneous Fenton-activated carbon process[J]. Chinese Journal of Environmental Engineering, 2019, 13(4): 792-799. doi: 10.12030/j.cjee.201812123
Citation: LU Zhili, ZHANG Yao, HUANG Junliang, SHI Baoyou, HU Chun, CHI Xiaojing, WANG Haibo. Enhancement of potable water disinfection efficiency by heterogeneous Fenton-activated carbon process[J]. Chinese Journal of Environmental Engineering, 2019, 13(4): 792-799. doi: 10.12030/j.cjee.201812123

多相芬顿-活性炭工艺强化饮用水消毒效果

  • 基金项目:

    国家重点研发计划项目2016YFA0203204

    国家自然科学基金资助项目51878654, 51838005

    中国科学院前沿科学重点研究项目QYZDY-SSW-DQC004

    国家水体污染与控制科技重大专项2017ZX07108, 2017ZX07501-002国家重点研发计划项目(2016YFA0203204)

    国家自然科学基金资助项目(51878654, 51838005)

    中国科学院前沿科学重点研究项目(QYZDY-SSW-DQC004)

    国家水体污染与控制科技重大专项(2017ZX07108, 2017ZX07501-002)

Enhancement of potable water disinfection efficiency by heterogeneous Fenton-activated carbon process

  • Fund Project:
  • 摘要: 为了考察多相芬顿-活性炭工艺对饮用水中微生物消毒效果的影响,采用中试对活性炭工艺与多相芬顿-活性炭工艺进行了对比研究。该中试对水中溶解性有机物(DOC)、总细菌16S rRNA、三磷酸腺苷(ATP)及胞外多聚物(EPS)含量与性质进行了分析。结果表明,多相芬顿-活性炭工艺能够将出水DOC浓度控制在(0.90±0.11) mg·L-1,并使得EPS减少83.2%,降低EPS中蛋白质/多糖(PN/PS)比值,其凝聚性明显下降,在相同氯浓度投加情况下水中微生物16S rRNA基因拷贝数去除量提高了3.5个对数量级,ATP浓度降低为0.016 nmol·L-1。因此,多相芬顿-活性炭工艺明显提高了对有机物的去除能力,显著降低EPS中蛋白质的含量,使得微生物凝聚性变差,微生物更加容易被消毒剂灭活,该工艺强化了饮用水消毒效果。
  • 加载中
  • [1] 言野, 李娜, 刘楠楠, 等. 利用改进的SOS/umu方法检测水处理过程中污染物的遗传毒性效应[J]. 生态毒理学报, 2013, 8(6): 909-916.
    [2] ZHANG J, LI W, WANG F, et al. Exploring the biological stability situation of a full scale water distribution system in south China by three biological stability evaluation methods[J]. Chemosphere, 2016, 161: 43-52.
    [3] 王永京, 冯思捷, 季雨晴, 等. 臭氧-生物活性炭工艺对臭味及溴酸盐控制的中试研究[J]. 给水排水, 2016, 52(8): 27-32.
    [4] JUNG Y, HONG E, KWON M, et al. A kinetic study of ozone decay and bromine formation in saltwater ozonation: Effect of O3 dose, salinity, pH, and temperature[J]. Chemical Engineering Journal, 2017, 312: 30-38.
    [5] LIN T, WU S, CHEN W. Formation potentials of bromate and brominated disinfection by-products in bromide-containing water by ozonation[J]. Environmental Science and Pollution Research, 2014, 21(24): 13987-14003.
    [6] ZHAO L, CHEN Y, LIU Y, et al. Enhanced degradation of chloramphenicol at alkaline conditions by S(-II) assisted heterogeneous Fenton-like reactions using pyrite[J]. Chemosphere, 2017, 188: 557-566.
    [7] ZHANG Y, CHEN Z, ZHOU L, et al. Heterogeneous Fenton degradation of bisphenol A using Fe3O4@β-CD/rGO composite: Synergistic effect, principle and way of degradation[J]. Environmental Pollution, 2019, 244: 93-101.
    [8] HOU X, HUANG X, JIA F, et al. Hydroxylamine promoted goethite surface fenton degradation of organic pollutants[J]. Environmental Science & Technology, 2017, 51(9): 5118-5126.
    [9] XIE Z, WANG C, YIN L. Nickel-assisted iron oxide catalysts for the enhanced degradation of refractory DDT in heterogeneous Fenton-like system[J]. Journal of Catalysis, 2017, 353: 11-18.
    [10] 吕来, 胡春. 多相芬顿催化水处理技术与原理[J]. 化学进展, 2017, 29(9): 981-999.
    [11] PAPCIAK D, TCHóRZEWSKA-CIESLAK B, PIETRUCHA-URBANIK K, et al. Analysis of the biological stability of tap water on the basis of risk analysis and parameters limiting the secondary growth of microorganisms in water distribution systems[J]. Desalination and Water Treatment, 2018, 117: 1-8.
    [12] HUANG G, XIA D, AN T, et al. Dual roles of capsular extracellular polymeric substances in photocatalytic inactivation of Escherichia coli: Comparison of E. coli BW25113 and isogenic mutants[J]. Applied and Environmental Microbiology, 2015, 81(15): 5174-5183.
    [13] WANG H, SHEN Y, HU C, et al. Sulfadiazine/ciprofloxacin promote opportunistic pathogens occurrence in bulk water of drinking water distribution systems[J]. Environmental Pollution, 2018, 234: 71-78.
    [14] BUSI S, KARUGANTI S, RAJKUMARI J, et al. Sludge settling and algal flocculating activity of extracellular polymeric substance (EPS) derived from bacillus cereus SK[J]. Water and Environment Journal, 2017, 31(1): 97-104.
    [15] YUAN S, SUN M, SHENG G, et al. Identification of key constituents and structure of the extracellular polymeric substances excreted by Bacillusmegaterium TF10 for their flocculation capacity[J]. Environmental Science & Technology, 2011, 45(3): 1152-1157.
    [16] 赵社行, 王海波, 胡春, 等. UV/H2O2及活性炭过滤对消毒副产物和条件致病菌的控制[J]. 环境工程学报, 2018, 12(9): 2457-2465.
    [17] ZHANG P, FANG F, CHEN Y, et al. Composition of EPS fractions from suspended sludge and biofilm and their roles in microbial cell aggregation[J]. Chemosphere, 2014, 117: 59-65.
    [18] CHEN W, WESTERHOFF P, LEENHEER J A, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environmental Science & Technology, 2003, 37(24): 5701-5710.
    [19] ZHU L, QI H, LV M, et al. Component analysis of extracellular polymeric substances (EPS) during aerobic sludge granulation using FTIR and 3D-EEM technologies[J]. Bioresource Technology, 2012, 124: 455-459.
    [20] LI C, WANG Y, DU H, et al. Influence of bacterial extracellular polymeric substances on the sorption of Zn on γ-alumina: A combination of FTIR and EXAFS studies[J]. Environmental Pollution, 2017, 220: 997-1004.
    [21] WANG B, LIU X, CHEN J, et al. Composition and functional group characterization of extracellular polymeric substances (EPS) in activated sludge: the impacts of polymerization degree of proteinaceous substrates[J]. Water Research, 2018, 129: 133-142.
    [22] ADELEYE A S, KELLER A A. Interactions between algal extracellular polymeric substances and commercial TiO2 nanoparticles in aqueous media[J]. Environmental Science & Technology, 2016, 50(22): 12258-12265.
    [23] XING X, WANG H, HU C, et al. Effects of phosphate-enhanced ozone/biofiltration on formation of disinfection byproducts and occurrence of opportunistic pathogens in drinking water distribution systems[J]. Water Research, 2018, 139: 168-176.
  • 加载中
计量
  • 文章访问数:  4165
  • HTML全文浏览数:  3929
  • PDF下载数:  211
  • 施引文献:  0
出版历程
  • 刊出日期:  2019-04-15

多相芬顿-活性炭工艺强化饮用水消毒效果

  • 1. 华北水利水电大学环境与市政工程学院,郑州 450045
  • 2. 中国科学院生态环境研究中心,中国科学院饮用水科学与技术重点实验室,北京 100085
  • 3. 河海大学环境学院,南京 210098
  • 4. 广州大学大湾区环境研究院,广州 510006
  • 5. 北京华夏博信环境咨询有限公司,北京 100085
基金项目:

国家重点研发计划项目2016YFA0203204

国家自然科学基金资助项目51878654, 51838005

中国科学院前沿科学重点研究项目QYZDY-SSW-DQC004

国家水体污染与控制科技重大专项2017ZX07108, 2017ZX07501-002国家重点研发计划项目(2016YFA0203204)

国家自然科学基金资助项目(51878654, 51838005)

中国科学院前沿科学重点研究项目(QYZDY-SSW-DQC004)

国家水体污染与控制科技重大专项(2017ZX07108, 2017ZX07501-002)

摘要: 为了考察多相芬顿-活性炭工艺对饮用水中微生物消毒效果的影响,采用中试对活性炭工艺与多相芬顿-活性炭工艺进行了对比研究。该中试对水中溶解性有机物(DOC)、总细菌16S rRNA、三磷酸腺苷(ATP)及胞外多聚物(EPS)含量与性质进行了分析。结果表明,多相芬顿-活性炭工艺能够将出水DOC浓度控制在(0.90±0.11) mg·L-1,并使得EPS减少83.2%,降低EPS中蛋白质/多糖(PN/PS)比值,其凝聚性明显下降,在相同氯浓度投加情况下水中微生物16S rRNA基因拷贝数去除量提高了3.5个对数量级,ATP浓度降低为0.016 nmol·L-1。因此,多相芬顿-活性炭工艺明显提高了对有机物的去除能力,显著降低EPS中蛋白质的含量,使得微生物凝聚性变差,微生物更加容易被消毒剂灭活,该工艺强化了饮用水消毒效果。

English Abstract

参考文献 (23)

目录

/

返回文章
返回