黑麦草修复重金属污染土壤与废水及富集植物的微生物降解

敬路淮, 肖伟, 田甲, 戚鑫, 肖诗琦, 晏婷婷, 张祥辉. 黑麦草修复重金属污染土壤与废水及富集植物的微生物降解[J]. 环境工程学报, 2019, 13(6): 1449-1456. doi: 10.12030/j.cjee.201810072
引用本文: 敬路淮, 肖伟, 田甲, 戚鑫, 肖诗琦, 晏婷婷, 张祥辉. 黑麦草修复重金属污染土壤与废水及富集植物的微生物降解[J]. 环境工程学报, 2019, 13(6): 1449-1456. doi: 10.12030/j.cjee.201810072
JING Luhuai, XIAO Wei, TIAN Jia, QI Xin, XIAO Shiqi, YAN Tingting, ZHANG Xianghui. Heavy metals contaminated soil and wastewater remediation by ryegrass and microbial degradation of its enriched plant[J]. Chinese Journal of Environmental Engineering, 2019, 13(6): 1449-1456. doi: 10.12030/j.cjee.201810072
Citation: JING Luhuai, XIAO Wei, TIAN Jia, QI Xin, XIAO Shiqi, YAN Tingting, ZHANG Xianghui. Heavy metals contaminated soil and wastewater remediation by ryegrass and microbial degradation of its enriched plant[J]. Chinese Journal of Environmental Engineering, 2019, 13(6): 1449-1456. doi: 10.12030/j.cjee.201810072

黑麦草修复重金属污染土壤与废水及富集植物的微生物降解

  • 基金项目:

    国家核设施退役及放射性废物治理科研重点项目16ZG6101

    国民核生化灾害防护国家重点实验室开放基金项目SKLNBC2015-04

    四川省科技厅项目18YYJC0927国家核设施退役及放射性废物治理科研重点项目(16ZG6101)

    国民核生化灾害防护国家重点实验室开放基金项目(SKLNBC2015-04)

    四川省科技厅项目(18YYJC0927)

Heavy metals contaminated soil and wastewater remediation by ryegrass and microbial degradation of its enriched plant

  • Fund Project:
  • 摘要: 为了研究黑麦草(Lolium perenne)修复复合重金属污染土壤与废水的综合利用效应,探索微生物对富集重金属黑麦草的降解效果,以复合重金属污染的土壤与废水为修复对象,利用黑麦草对土壤和废水进行修复,并考察了黑麦草的重金属含量、富集量、富集系数和转移系数。采用8种微生物对富集重金属黑麦草进行降解,考察黑麦草的失重率,黑麦草纤维素、半纤维素和木质素的变化情况以及重金属的浸出效果。结果表明:黑麦草对重金属污染的土壤与水体均具有较好的修复效果;在土壤修复阶段,黑麦草对U的富集系数最大,达到7.43;而对Cd的富集系数为2.61,对Pb和Sr的修复效果不明显;在废水修复阶段,黑麦草对U的富集量达到1 213.70 mg·kg-1 DW,U、Cr、Sr、Co的富集系数和转移系数均大于1,其中U的富集系数达到11.24。另外,里氏木霉(Trichoderma ressei)和黄孢原毛平革菌(Phanerochaete chrysosporium)对富集黑麦草的总降解率达到60%以上;里氏木霉(Trichoderma ressei)、枯草芽孢杆菌(Bacillus subtilis)和地衣芽孢杆菌(Bacillus lincheniformis)对重金属的平均浸出率分别达到87.19%、90.58%和90.33%。在重金属污染的土壤和水体中,通过对黑麦草的循环使用,可以提高黑麦草的综合利用效率,有效减少富集生物质的产生;同时微生物对富集生物质有较好的降解能力。研究为重金属富集生物质微生物处置以及重金属回收技术奠定基础。
  • 加载中
  • [1] 张辉, 付融冰, 郭小品, 等. 铬污染土壤的还原稳定化修复[J]. 环境工程学报, 2017, 11(11): 383-388.
    [2] KATAYAMA H, BANBA N, SUGIMURA Y, et al. Subcellular compartmentation of strontium and zinc in mulberry idioblasts in relation to phytoremediation potential[J]. Environmental & Experimental Botany, 2013, 85(1): 30-35.
    [3] CESTONE B, QUARTACCI M F, NAVARIIZZO F. Uptake and translocation of CuEDDS complexes by Brassica carinata[J]. Environmental Science & Technology, 2010, 44(16): 6403-6408.
    [4] REZVANI M, ZAEFARIAN F, MIRANSARI M, et al. Uptake and translocation of cadmium and nutrients by Aeluropus littoralis[J]. Archives of Agronomy and Soil Science, 2012, 58(12): 1413-1425.
    [5] 徐卫红, 王宏信, 王正银, 等. 重金属富集植物黑麦草对锌、镉复合污染的响应[J]. 中国农学通报, 2006, 22(6): 365.
    [6] 张晓斌, 梁宵, 占新华, 等. 菲污染土壤黑麦草/苜蓿间作修复效应[J]. 环境工程学报, 2013, 7(5): 1974-1978.
    [7] ZHIVOTOVSKY O P, KUZOVKINA Y A, SCHULTHESS C P, et al. Lead uptake and translocation by willows in pot and field experiments[J]. International Journal of Phytoremediation, 2011, 13(8): 731-749.
    [8] BARBAROUX R, PLASARI E, MERCIER G, et al. A new process for nickel ammonium disulfate production from ash of the hyperaccumulating plant Alyssum murale[J]. Science of the Total Environment, 2012, 423: 111-119.
    [9] CHEN Y, SHEN Z, LI X. The use of vetiver grass (Vetiveria zizanioides) in the phytoremediation of soils contaminated with heavy metals[J]. Applied Geochemistry, 2004, 19(10): 1553-1565.
    [10] LU S, DU Y, ZHONG D, et al. Comparison of trace element emissions from thermal treatments of heavy metal hyperaccumulators[J]. Environmental Science & Technology, 2012, 46(9): 5025-5031.
    [11] BARBAROUX R, PLASARI E, MERCIER G, et al. A new process for nickel ammonium disulfate production from ash of the hyperaccumulating plant Alyssum murale[J]. Science of the Total Environment, 2012, 423: 111-119.
    [12] CAO X, MA L, SHIRALIPOUR A, et al. Biomass reduction and arsenic transformation during composting of arsenic-rich hyperaccumulator Pteris vittata L[J]. Environmental Science & Pollution Research International, 2010, 17(3): 586-594.
    [13] LIU W J, TIAN K, JIANG H, et al. Selectively improving the bio-oil quality by catalytic fast pyrolysis of heavy-metal-polluted biomass: Take copper (Cu) as an example[J]. Environmental Science and Technology, 2012, 46(14): 7849-7856.
    [14] 宋玉婷, 雷泞菲, 李淑丽. 植物修复重金属污染土地的研究进展[J]. 国土资源科技管理, 2018, 35(5): 58-68.
    [15] 张祥辉, 肖伟, 唐俊杰, 等. 强启动真菌在牧草降解减容过程中的应用[J]. 中国农学通报, 2016, 32(23): 16-21.
    [16] 宋收, 陈晓明, 肖伟, 等. 基于BIOLOG指纹解析土壤可培微生物对铀污染的响应[J]. 核农学报, 2016, 30(6): 1169-1177.
    [17] 戚鑫, 陈晓明, 肖诗琦, 等. 生物炭固定化微生物对U、Cd污染土壤的原位钝化修复[J]. 农业环境科学学报, 2018, 37(8): 1683-1689.
    [18] 唐永金, 罗学刚, 曾峰, 等. 不同植物对高浓度铀胁迫的响应与铀富集植物筛选[J]. 核农学报, 2013, 27(12): 1920-1926.
    [19] 贾永霞, 张春梅, 方继宇, 等. 细叶百日草对镉的生长响应及富集特征研究[J]. 核农学报, 2015, 29(8): 1577-1582.
    [20] 郝希超, 陈晓明, 罗学刚, 等. 不同牧草在铀胁迫下生长及铀富集的比较研究[J]. 核农学报, 2016, 30(3): 548-555.
    [21] 王金主, 王元秀, 李峰, 等. 玉米秸秆中纤维素、半纤维素和木质素的测定[J]. 山东食品发酵, 2010(3): 44-47.
    [22] 王建庆, 曹佃元, 张玉. 乙酰溴法测定棉籽壳中木质素的含量[J]. 纺织学报, 2013, 34(9): 12-16.
    [23] SHTANGEEVA I. Uptake of uranium and thorium by native and cultivated plants[J]. Journal of Environmental Radioactivity, 2010, 101(6): 458-463.
    [24] 苏瑞, 马玉洁, 马骏, 等. 培养条件对黄孢原毛平革菌降解稻草的研究[J]. 西南民族大学学报(自然科学版), 2009, 35(2): 293-296.
    [25] 王毅, 刘云国, 习兴梅, 等. 枯草芽胞杆菌降解木质纤维素能力及产酶研究[J]. 微生物学杂志, 2008, 28(4): 1-6.
    [26] SINGH J, KALAMDHAD A S. Concentration and speciation of heavy metals during water hyacinth composting[J]. Bioresource Technology, 2012, 124(3): 169-179.
    [27] 王莉, 陈晓明, 肖伟, 等. 氧化亚铁硫杆菌(Thiobacillus ferrooxidans)对重金属富集植物腐蚀作用研究[J]. 农业环境科学学报, 2016, 35(12): 2420-2430.
  • 加载中
计量
  • 文章访问数:  3553
  • HTML全文浏览数:  3473
  • PDF下载数:  134
  • 施引文献:  0
出版历程
  • 刊出日期:  2019-06-18

黑麦草修复重金属污染土壤与废水及富集植物的微生物降解

  • 1. 西南科技大学生命科学与工程学院,绵阳 621010
基金项目:

国家核设施退役及放射性废物治理科研重点项目16ZG6101

国民核生化灾害防护国家重点实验室开放基金项目SKLNBC2015-04

四川省科技厅项目18YYJC0927国家核设施退役及放射性废物治理科研重点项目(16ZG6101)

国民核生化灾害防护国家重点实验室开放基金项目(SKLNBC2015-04)

四川省科技厅项目(18YYJC0927)

摘要: 为了研究黑麦草(Lolium perenne)修复复合重金属污染土壤与废水的综合利用效应,探索微生物对富集重金属黑麦草的降解效果,以复合重金属污染的土壤与废水为修复对象,利用黑麦草对土壤和废水进行修复,并考察了黑麦草的重金属含量、富集量、富集系数和转移系数。采用8种微生物对富集重金属黑麦草进行降解,考察黑麦草的失重率,黑麦草纤维素、半纤维素和木质素的变化情况以及重金属的浸出效果。结果表明:黑麦草对重金属污染的土壤与水体均具有较好的修复效果;在土壤修复阶段,黑麦草对U的富集系数最大,达到7.43;而对Cd的富集系数为2.61,对Pb和Sr的修复效果不明显;在废水修复阶段,黑麦草对U的富集量达到1 213.70 mg·kg-1 DW,U、Cr、Sr、Co的富集系数和转移系数均大于1,其中U的富集系数达到11.24。另外,里氏木霉(Trichoderma ressei)和黄孢原毛平革菌(Phanerochaete chrysosporium)对富集黑麦草的总降解率达到60%以上;里氏木霉(Trichoderma ressei)、枯草芽孢杆菌(Bacillus subtilis)和地衣芽孢杆菌(Bacillus lincheniformis)对重金属的平均浸出率分别达到87.19%、90.58%和90.33%。在重金属污染的土壤和水体中,通过对黑麦草的循环使用,可以提高黑麦草的综合利用效率,有效减少富集生物质的产生;同时微生物对富集生物质有较好的降解能力。研究为重金属富集生物质微生物处置以及重金属回收技术奠定基础。

English Abstract

参考文献 (27)

目录

/

返回文章
返回