pH对高铁酸盐氧化剩余污泥的影响

金润, 李祥, 郭超然, 殷记强, 黄勇, 马军. pH对高铁酸盐氧化剩余污泥的影响[J]. 环境工程学报, 2019, 13(3): 740-747. doi: 10.12030/j.cjee.201809162
引用本文: 金润, 李祥, 郭超然, 殷记强, 黄勇, 马军. pH对高铁酸盐氧化剩余污泥的影响[J]. 环境工程学报, 2019, 13(3): 740-747. doi: 10.12030/j.cjee.201809162
JIN Run, LI Xiang, GUO Chaoran, YIN Jiqiang, HUANG Yong, MA Jun. Effects of pH on ferrate oxidation of excess sludge[J]. Chinese Journal of Environmental Engineering, 2019, 13(3): 740-747. doi: 10.12030/j.cjee.201809162
Citation: JIN Run, LI Xiang, GUO Chaoran, YIN Jiqiang, HUANG Yong, MA Jun. Effects of pH on ferrate oxidation of excess sludge[J]. Chinese Journal of Environmental Engineering, 2019, 13(3): 740-747. doi: 10.12030/j.cjee.201809162

pH对高铁酸盐氧化剩余污泥的影响

  • 基金项目:

    国家自然科学基金资助项目51478287,51408384国家自然科学基金资助项目(51478287,51408384)

    江苏省特色优势学科二期项目

    江苏省水处理技术与材料协同创新 中心项目

Effects of pH on ferrate oxidation of excess sludge

  • Fund Project:
  • 摘要: 针对高铁酸盐在酸、碱性环境下氧化性和稳定性的不同,采用pH调至1、3、5、7、9、11、13的剩余污泥,投加高铁酸盐溶液进行研究,考察污泥脱水性能(污泥比阻)以及减量化效果,包括破解液性质(氨氮NH4+-N、总氮TN、正磷酸盐PO43-、总磷TP、总有机碳TOC、溶解性有机物SCOD、胞外聚合物EPS)和污泥性状(混合液挥发性悬浮固体浓度MLVSS、污泥沉降比SV、污泥体积指数SVI、粒径)。结果表明:pH由低到高,破解液中各类污染物浓度总体呈现出两端高中间低的趋势,高铁酸盐在酸性和碱性条件下的氧化效果均优于中性条件。其中,pH达13时减量化效果最佳,氮素和有机物质溶出最多,然而此时的脱水性能最差;pH为1时破解液中磷素最多,达90.6 mg·L-1。当pH为13,每g污泥(干重)的高铁酸盐投加量为15 mg Fe时,1 g MLVSS的污泥SCOD释放量达1.13 g,TN、SCOD、TOC释放量分别为179.3、3 507.9和1 134.3 mg·L-1,在达到污泥减量化效果的同时更有利于破解液的后期资源化回收和处理。
  • 加载中
  • [1] 刘阳, 曾薇, 韩玉伟, 等. 热水解预处理对剩余污泥可生物降解性的影响[J]. 环境工程学报, 2016, 10(8): 4445-4450.
    [2] TIEHM A, NICKEL K, ZELLHORN M, et al. Ultrasonic waste activated sludge disintegration for improving anaerobic stabilization[J]. Water Research, 2001, 35(8): 2003-2009.
    [3] ZHANG D, CHEN Y, ZHAO Y, et al. New sludge pretreatment method to improve methane production in waste activated sludge digestion[J]. Environmental Science & Technology, 2010, 44(12): 4802-4808.
    [4] FITER M. Ozonation as a pretreatment for anaerobic digestion of waste activated sludge: Effect of the ozone doses[J]. Ozone Science & Engineering, 2015, 37(4): 1-7.
    [5] WANG G, SUI J, SHEN H, et al. Reduction of excess sludge production in sequencing batch reactor through incorporation of chlorine dioxide oxidation[J]. Journal of Hazardous Materials, 2011, 192(1): 93-98.
    [6] 郭宇衡. 高铁酸钾对污泥的脱水减量研究[D]. 广州: 华南理工大学, 2013.
    [7] 李洋洋, 李欢, 金宜英, 等. 碱热联合处理用于污泥强化脱水[J]. 高校化学工程学报, 2010, 24(4): 714-718.
    [8] 徐慧敏, 何国富, 戴晓虎, 等. 超声联合碱解预处理对剩余污泥破解和厌氧消化的影响[J]. 环境工程学报, 2017, 11(5):3073-3078.
    [9] JIANG J Q. Advances in the development and application of ferrate(VI) for water and wastewater treatment[J]. Journal of Chemical Technology & Biotechnology, 2014, 89(2): 165-177.
    [10] JIANG J Q, LLOYD B. Progress in the development and use of ferrate(VI) salt as an oxidant and coagulant for water and wastewater treatment[J]. Water Research, 2002, 36(6): 1397-1408.
    [11] JIANG J Q, SHARMA V K. The Use of Ferrate(VI) Technology in Sludge Treatment[M]. Washington, DC: American Chemical Society, 2008: 306-325.
    [12] 吕丰锦, 刘俊新. 我国南北方城市污水处理厂污泥性质比较分析[J]. 给水排水, 2016, 42(s1): 63-66.
    [13] ZHANG W, CAO B, WANG D, et al. Variations in distribution and composition of extracellular polymeric substances (EPS) of biological sludge under potassium ferrate conditioning: Effects of pH and ferrate dosage[J]. Biochemical Engineering Journal, 2016, 106: 37-47.
    [14] ZHANG X, LEI H, KAI C, et al. Effect of potassium ferrate (K2FeO4) on sludge dewaterability under different pH conditions[J]. Chemical Engineering Journal, 2012, 210: 467-474.
    [15] 张煜, 李明玉, 李善得, 等. 直接分光光度法测定高铁酸盐的含量[J]. 无机盐工业, 2011, 43(2): 59-62.
    [16] 国家环境保护总局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002.
    [17] 中华人民共和国建设部. 城市污水处理厂污泥检验方法: CJ/T 221-2005[S]. 北京: 中国标准出版社, 2005.
    [18] HERBERT D, PHILIPPS P J, STRANGE R E. Carbohydrate analysis[J]. Methods in Enzymology, 1971, 5: 265-277.
    [19] LOWRY O H, ROSEBROUGH N J, FARR A L, et al. Protein measurement with the folin phenol reagent[J]. Journal of Biological Chemistry, 1951, 193(1): 265-275.
    [20] NIU T, ZHOU Z, REN W, et al. Effects of potassium peroxymonosulfate on disintegration of waste sludge and properties of extracellular polymeric substances[J]. International Biodeterioration & Biodegradation, 2016, 106: 170-177.
    [21] LIU Y, WANG L, MA J, et al. Improvement of settleability and dewaterability of sludge by newly prepared alkaline ferrate solution[J]. Chemical Engineering Journal, 2016, 287: 11-18.
    [22] FANG Z, LONG X, RAN T, et al. The phosphorus-incorporating property of extracellular polymer substances[J]. Acta Scientiae Circumstantiae, 2011, 31(11): 2374-2379.
    [23] ZHANG X, LEI H, KAI C, et al. Effect of potassium ferrate (K2FeO4) on sludge dewaterability under different pH conditions[J]. Chemical Engineering Journal, 2012, 210: 467-474.
    [24] FENG X, LEI H, DENG J, et al. Physical and chemical characteristics of waste activated sludge treated ultrasonically[J]. Chemical Engineering & Processing Process Intensification, 2009, 48(1): 187-194.
    [25] 刘天泽. 高铁酸盐污泥减量实验研究[D]. 哈尔滨: 哈尔滨工业大学, 2010.
    [26] LIU H, FANG H H P. Extraction of extracellular polymeric substances (EPS) of sludges[J]. Journal of Biotechnology, 2002, 95(3): 249-256.
    [27] LASPIDOU C S, RITTMANN B E. A unified theory for extracellular polymeric substances, soluble microbial products, and active and inert biomass[J]. Water Research, 2002, 36(11): 2711-2720.
    [28] YANG S F, LI X Y. Influences of extracellular polymeric substances (EPS) on the characteristics of activated sludge under non-steady-state conditions[J]. Process Biochemistry, 2009, 44(1): 91-96.
    [29] ZHANG W, XIAO P, LIU Y, et al. Understanding the impact of chemical conditioning with inorganic polymer flocculants on soluble extracellular polymeric substances in relation to the sludge dewaterability[J]. Separation & Purification Technology, 2014, 132(1): 430-437.
  • 加载中
计量
  • 文章访问数:  3085
  • HTML全文浏览数:  3035
  • PDF下载数:  136
  • 施引文献:  0
出版历程
  • 刊出日期:  2019-03-14
金润, 李祥, 郭超然, 殷记强, 黄勇, 马军. pH对高铁酸盐氧化剩余污泥的影响[J]. 环境工程学报, 2019, 13(3): 740-747. doi: 10.12030/j.cjee.201809162
引用本文: 金润, 李祥, 郭超然, 殷记强, 黄勇, 马军. pH对高铁酸盐氧化剩余污泥的影响[J]. 环境工程学报, 2019, 13(3): 740-747. doi: 10.12030/j.cjee.201809162
JIN Run, LI Xiang, GUO Chaoran, YIN Jiqiang, HUANG Yong, MA Jun. Effects of pH on ferrate oxidation of excess sludge[J]. Chinese Journal of Environmental Engineering, 2019, 13(3): 740-747. doi: 10.12030/j.cjee.201809162
Citation: JIN Run, LI Xiang, GUO Chaoran, YIN Jiqiang, HUANG Yong, MA Jun. Effects of pH on ferrate oxidation of excess sludge[J]. Chinese Journal of Environmental Engineering, 2019, 13(3): 740-747. doi: 10.12030/j.cjee.201809162

pH对高铁酸盐氧化剩余污泥的影响

  • 1. 苏州科技大学环境科学与工程学院,苏州 215011
  • 2. 苏州科技大学环境生物技术研究所,苏州 215011
  • 3. 哈尔滨工业大学环境学院城市水资源与水环境国家重点实验室,哈尔滨 150090
基金项目:

国家自然科学基金资助项目51478287,51408384国家自然科学基金资助项目(51478287,51408384)

江苏省特色优势学科二期项目

江苏省水处理技术与材料协同创新 中心项目

摘要: 针对高铁酸盐在酸、碱性环境下氧化性和稳定性的不同,采用pH调至1、3、5、7、9、11、13的剩余污泥,投加高铁酸盐溶液进行研究,考察污泥脱水性能(污泥比阻)以及减量化效果,包括破解液性质(氨氮NH4+-N、总氮TN、正磷酸盐PO43-、总磷TP、总有机碳TOC、溶解性有机物SCOD、胞外聚合物EPS)和污泥性状(混合液挥发性悬浮固体浓度MLVSS、污泥沉降比SV、污泥体积指数SVI、粒径)。结果表明:pH由低到高,破解液中各类污染物浓度总体呈现出两端高中间低的趋势,高铁酸盐在酸性和碱性条件下的氧化效果均优于中性条件。其中,pH达13时减量化效果最佳,氮素和有机物质溶出最多,然而此时的脱水性能最差;pH为1时破解液中磷素最多,达90.6 mg·L-1。当pH为13,每g污泥(干重)的高铁酸盐投加量为15 mg Fe时,1 g MLVSS的污泥SCOD释放量达1.13 g,TN、SCOD、TOC释放量分别为179.3、3 507.9和1 134.3 mg·L-1,在达到污泥减量化效果的同时更有利于破解液的后期资源化回收和处理。

English Abstract

参考文献 (29)

返回顶部

目录

/

返回文章
返回