多孔Fe-Si电极电催化还原硝酸根离子

苏诚, 施翼杰, 伍廉奎, 姚建英, 李军, 姚志强, 曹华珍, 郑国渠. 多孔Fe-Si电极电催化还原硝酸根离子[J]. 环境工程学报, 2019, 13(2): 319-326. doi: 10.12030/j.cjee.201809046
引用本文: 苏诚, 施翼杰, 伍廉奎, 姚建英, 李军, 姚志强, 曹华珍, 郑国渠. 多孔Fe-Si电极电催化还原硝酸根离子[J]. 环境工程学报, 2019, 13(2): 319-326. doi: 10.12030/j.cjee.201809046
SU Cheng, SHI Yijie, WU Liankui, YAO Jianying, LI Jun, YAO Zhiqiang, CAO Huazhen, ZHENG Guoqu. Electrocatalytic reduction of nitrate ions by porous Fe-Si electrode[J]. Chinese Journal of Environmental Engineering, 2019, 13(2): 319-326. doi: 10.12030/j.cjee.201809046
Citation: SU Cheng, SHI Yijie, WU Liankui, YAO Jianying, LI Jun, YAO Zhiqiang, CAO Huazhen, ZHENG Guoqu. Electrocatalytic reduction of nitrate ions by porous Fe-Si electrode[J]. Chinese Journal of Environmental Engineering, 2019, 13(2): 319-326. doi: 10.12030/j.cjee.201809046

多孔Fe-Si电极电催化还原硝酸根离子

  • 基金项目:

Electrocatalytic reduction of nitrate ions by porous Fe-Si electrode

  • Fund Project:
  • 摘要: 水体硝酸盐污染已成为一个日益严重的问题。以多孔Fe和Fe-Si合金为阴极,Ti/IrO2为阳极构建电解系统,对模拟废水(100 mg·L-1NO3--N + 500 mg·L-1 NaCl + 500 mg·L-1 Na2SO4)进行电解以去除其中的硝酸根离子,并研究了多孔Fe-Si合金在电解过程中的稳定性。实验结果表明,增大电流密度有利于提高NO3--N和总氮的去除效率。当电流密度为40 mA·cm-2时,以多孔Fe为阴极,几乎无副产物产生,NO3--N和总氮去除率均为94.3%,但电解完成之后Fe电极腐蚀严重,溶液中铁离子浓度达1 418 mg·L-1。而以多孔Fe-Si为阴极时,随合金中硅含量增加,NO3--N和总氮去除率均呈下降趋势,但电极稳定性显著提高,电解完成之后溶液中Fe离子浓度显著下降。当Fe-Si合金中硅原子百分比为50%时,NO3--N和总氮去除率均为78.8%,此时溶液中Fe离子浓度仅为41 mg·L-1。多孔Fe-Si合金作为阴极还原硝酸根离子时,具有较高的硝酸根去除率和良好的稳定性,应用前景较好。
  • 加载中
  • [1] SUN Y, NEMATI M. Evaluation of sulfur-based autotrophic denitrification and denitritation for biological removal of nitrate and nitrite from contaminated waters[J]. Bioresource Technology, 2012, 114(2): 207-216.
    [2] RIVETT M O, BUSS S R, MORGAN P, et al. Nitrate attenuation in groundwater: A review of biogeochemical controlling processes[J]. Water Research, 2008, 42(16): 4215-4232.
    [3] WINKLER M, COATS E R, BRINKMAN C K. Advancing post-anoxic denitrification for biological nutrient removal[J]. Water Research, 2011, 45(18): 6119-6130.
    [4] KALARUBAN M, LOGANATHAN P, SHIM W G, et al. Removing nitrate from water using iron-modified Dowex 21K XLT ion exchange resin: Batch and fluidised-bed adsorption studies[J]. Separation and Purification Technology, 2016, 158: 62-70.
    [5] EPSZTEIN R, NIR O, LAHAV O, et al. Selective nitrate removal from groundwater using a hybrid nanofiltration-reverse osmosis filtration scheme[J]. Chemical Engineering Journal, 2015, 279: 372-378.
    [6] 刘蕾, 张冬梅, 褚衍洋. 电化学法去除水中的硝酸根 [J]. 环境工程学报, 2013, 7(11): 4195-4200.
    [7] DING J, LI W, ZHAO Q L, et al. Electroreduction of nitrate in water: Role of cathode and cell configuration[J]. Chemical Engineering Journal, 2015, 271: 252-259.
    [8] GHAFARI S, HASAN M, AROUA M K. Bio-electrochemical removal of nitrate from water and wastewater: A review[J]. Bioresource Technology, 2008, 99(10): 3965-3974.
    [9] 范彬, 曲久辉, 刘锁祥, 等. 饮用水中硝酸盐的脱除[J]. 环境工程学报, 2000, 1(3): 44-50.
    [10] SU L, LI K, ZHANG H,et al. Electrochemical nitrate reduction by using a novel Co3O4/Ti cathode[J]. Water Research, 2017, 120: 1-11.
    [11] LI M, FENG C, ZHANG Z, et al. Electrochemical reduction of nitrate using various anodes and a Cu/Zn cathode[J]. Electrochemistry Communications, 2009, 11(10): 1853-1856.
    [12] 周丽, 邓慧萍, 刘振中, 等. 多孔钛板负载Pd-Sn电催化去除硝酸盐氮的研究[J]. 供水技术, 2007, 1(5): 32-36.
    [13] KUANG P, FENG C, LI M, et al. Improvement on electrochemical reduction of nitrate in synthetic groundwater by reducing anode surface area[J]. Journal of the Electrochemical Society, 2017, 164(6): 103-112.
    [14] REYTER D, BELANGER D, ROUE L. Nitrate removal by a paired electrolysis on copper and Ti/IrO2 coupled electrodes-influence of the anode/cathode surface area ratio[J]. Water Research, 2010, 44(6): 1918-1926.
    [15] MA X, LI M, FENG C, et al. Development and reaction mechanism of efficient nano titanium electrode: Reconstructed nanostructure and enhanced nitrate removal efficiency[J]. Journal of Electroanalytical Chemistry, 2016, 782: 270-277.
    [16] DASH B P, CHAUDHARI S. Electrochemical denitrificaton of simulated ground water[J]. Water Research, 2005, 39(17): 4065-4072.
    [17] 叶舒帆, 胡筱敏, 和英滇, 等. 非贵金属催化还原水中的硝酸盐氮[J]. 环境化学, 2011, 30(10): 1711-1717.
    [18] LI W, XIAO C, ZHAO Y, et al. Electrochemical reduction of high-concentrated nitrate using Ti/TiO2 nanotube array anode and Fe cathode in dual-chamber cell[J]. Catalysis Letters, 2016, 146(12): 2585-2595.
    [19] OMURTAG Y, DORUK M. Some investigations on the corrosion characteristics of Fe-Si alloys[J]. Corrosion Science, 1970, 10(4): 225-231.
    [20] WU L K, LIU X Y, HU J M. Electrodeposited SiO2 film: A promising interlayer of a highly active Ti electrode for the oxygen evolution reaction[J]. Journal of Materials Chemistry A, 2016, 4(30): 11949-11956.
    [21] 中国国家环境保护总局. 水质 硝酸盐氮的测定紫外分光光度法(试行):HJ/T 346-2007[S]. 北京: 中国环境科学出版社, 2007.
    [22] 中国国家环境保护局. 水质 亚硝酸盐氮的测定分光光度法: GB/T 7493-1987[S]. 北京: 中国标准出版社, 1987.
    [23] 中国环境保护部. 水质 氨氮的测定水杨酸分光光度法: HJ 536-2009[S]. 北京: 中国环境科学出版社, 2009.
    [24] LI M, FENG C, ZHANG Z, et al. Treatment of nitrate contaminated water using an electrochemical method[J]. Bioresource Technology, 2010, 101(16): 6553-6557.
    [25] LIU Y, LI L, GOEL R. Kinetic study of electrolytic ammonia removal using Ti/IrO2 as anode under different experimental conditions[J]. Journal of Hazardous Materials, 2009, 167(1/2/3): 959-965.
  • 加载中
计量
  • 文章访问数:  6780
  • HTML全文浏览数:  6709
  • PDF下载数:  249
  • 施引文献:  0
出版历程
  • 刊出日期:  2019-02-02

多孔Fe-Si电极电催化还原硝酸根离子

  • 1. 浙江工业大学材料科学与工程学院,杭州 310014
  • 2. 浙江久立特材科技股份有限公司,湖州 313028
基金项目:

摘要: 水体硝酸盐污染已成为一个日益严重的问题。以多孔Fe和Fe-Si合金为阴极,Ti/IrO2为阳极构建电解系统,对模拟废水(100 mg·L-1NO3--N + 500 mg·L-1 NaCl + 500 mg·L-1 Na2SO4)进行电解以去除其中的硝酸根离子,并研究了多孔Fe-Si合金在电解过程中的稳定性。实验结果表明,增大电流密度有利于提高NO3--N和总氮的去除效率。当电流密度为40 mA·cm-2时,以多孔Fe为阴极,几乎无副产物产生,NO3--N和总氮去除率均为94.3%,但电解完成之后Fe电极腐蚀严重,溶液中铁离子浓度达1 418 mg·L-1。而以多孔Fe-Si为阴极时,随合金中硅含量增加,NO3--N和总氮去除率均呈下降趋势,但电极稳定性显著提高,电解完成之后溶液中Fe离子浓度显著下降。当Fe-Si合金中硅原子百分比为50%时,NO3--N和总氮去除率均为78.8%,此时溶液中Fe离子浓度仅为41 mg·L-1。多孔Fe-Si合金作为阴极还原硝酸根离子时,具有较高的硝酸根去除率和良好的稳定性,应用前景较好。

English Abstract

参考文献 (25)

目录

/

返回文章
返回