水介质中微气泡臭氧化处理高浓度甲苯气体

刘春, 庞晓克, 高立涛, 张静, 陈晓轩, 张磊, 张瑞娜. 水介质中微气泡臭氧化处理高浓度甲苯气体[J]. 环境工程学报, 2019, 13(1): 116-124. doi: 10.12030/j.cjee.201808174
引用本文: 刘春, 庞晓克, 高立涛, 张静, 陈晓轩, 张磊, 张瑞娜. 水介质中微气泡臭氧化处理高浓度甲苯气体[J]. 环境工程学报, 2019, 13(1): 116-124. doi: 10.12030/j.cjee.201808174
LIU Chun, PANG Xiaoke, GAO Litao, ZHANG Jing, CHEN Xiaoxuan, ZHANG Lei, ZHANG Ruina. High-concentration toluene gas treatment by microbubble ozonation in water medium[J]. Chinese Journal of Environmental Engineering, 2019, 13(1): 116-124. doi: 10.12030/j.cjee.201808174
Citation: LIU Chun, PANG Xiaoke, GAO Litao, ZHANG Jing, CHEN Xiaoxuan, ZHANG Lei, ZHANG Ruina. High-concentration toluene gas treatment by microbubble ozonation in water medium[J]. Chinese Journal of Environmental Engineering, 2019, 13(1): 116-124. doi: 10.12030/j.cjee.201808174

水介质中微气泡臭氧化处理高浓度甲苯气体

  • 基金项目:

    河北科技大学科学治霾及大气污染防治重点攻关预研专项课题

High-concentration toluene gas treatment by microbubble ozonation in water medium

  • Fund Project:
  • 摘要: 高浓度挥发性有机物(VOC)气体高效处理技术是大气污染控制领域关注的重点。采用微气泡臭氧化在水介质中通过吸收-氧化过程对高浓度甲苯气体进行处理,考察微气泡臭氧化强化甲苯吸收-氧化去除性能、机理以及水介质pH对该工艺处理效果的影响。结果表明,微气泡能够强化甲苯气体在水介质中的吸收过程,氮气/甲苯微气泡在水介质中的甲苯去除率和吸收量均显著高于氮气/甲苯传统气泡,同时氮气/甲苯微气泡通过产生·OH氧化反应,使得平均甲苯氧化矿化率达到40.97%。微气泡臭氧化在水介质中对甲苯气体具有更高效的去除性能,臭氧/甲苯微气泡处理中甲苯平均去除率为97.08%,甲苯可被完全矿化而几乎无中间产物积累,其平均氧化矿化率为88.56%、平均臭氧利用率为82.54%、臭氧投加量与甲苯矿化量比值为1.26,处理性能显著优于臭氧/甲苯传统气泡处理。水介质pH对臭氧/甲苯微气泡处理甲苯气体具有一定影响,不同pH条件下甲苯气体去除率基本相当,但中性条件下甲苯氧化矿化率最高;碱性和酸性条件下甲苯氧化矿化率有所下降。微气泡臭氧化为高浓度VOC气体高效处理提供了新的解决途径。
  • 加载中
  • [1] BERENJIAN A, CHAN N, MALMIRI H J. Volatile organic compounds removal methods: A review [J]. American Journal of Biochemistry and Biotechnology, 2012, 4(8): 220-229.
    [2] 席劲瑛, 武俊良, 胡洪营, 等. 工业VOCs气体处理技术应用状况调查分析[J]. 中国环境科学, 2012, 32(11): 1955-1960.
    [3] 栾志强, 郝郑平, 王喜芹. 工业固定源VOCs 治理技术分析评估[J]. 环境科学, 2011, 32(12): 3476-3486.
    [4] 黄海凤, 宁星杰, 蒋孝佳, 等. V-M/TiO2(M=Cu、Cr、Ce、Mn、Mo)催化燃烧含氯有机废气[J]. 中国环科学, 2014, 34(9): 2179-2185.
    [5] 黄学敏, 乔南利, 曹利, 等. CuxCe(1-x)O2/γ-Al2O3催化剂催化燃烧甲苯性能的研究[J]. 环境科学学报, 2012, 32(5): 1177-1182.
    [6] GUPTA K N, RAO N J, AGARWAL G K. Gaseous phase adsorption of volatile organic compounds on granular activated carbon [J]. Chemical Engineering Communications, 2015, 202(3): 384-401.
    [7] BAUR G B, BESWICK O, SPRING J, et al. Activated carbon fibers for efficient VOC removal from diluted streams: The role of surface functionalities [J]. Adsorption, 2015, 21(4): 255-264.
    [8] SPIGNO G, PAGELLA C, FUMI M D, et al. VOCs removal from waste gases: Gas-phase bioreactor for the abatement of hexane by Aspergillus niger [J]. Chemical Engineering Science, 2003, 58(3): 739-746.
    [9] GUIEYSSE B, HORT C, PLATEL V, et al. Biological treatment of indoor air for VOC removal: Potential and challenges [J]. Biotechnology Advances, 2008, 26(5): 398-410.
    [10] KWONG C W, CHAO C Y H, HUI K S, et al. Removal of VOCs from indoor environment by ozonation over different porous materials [J]. Atmospheric Environment, 2008, 42(10): 2300-2311.
    [11] BRODU N, ZAITAN H, MANERO M H, et al. Removal of volatile organic compounds by heterogeneous ozonation on microporous synthetic alumina silicate [J]. Water Science and Technology, 2012, 66(9): 2020-2026.
    [12] IKHLAQ A, KASPRZYK-HORDERN B. Catalytic ozonation of chlorinated VOCs on ZSM-5 zeolites and alumina: Formation of chlorides [J]. Applied Catalysis B: Environmental, 2017, 200(1): 274-282.
    [13] ZHONG L, HAGHIGHAT F. Ozonation air purification technology in HVAC applications [J]. Ashrae Transactions, 2014, 120(1): 1-8.
    [14] MOUSSAVI G R, KHAVANIN A, MOKARAMI H. Removal of xylene from waste air stream using catalytic ozonation process [J]. Iranian Journal of Health and Environment, 2010, 3(3): 239-250.
    [15] STOYANOVA M, KONOVA P, NIKOLOV P, et al. Alumina-supported nickel oxide for ozone decomposition and catalytic ozonation of CO and VOCs [J]. Chemical Engineering Journal, 2006, 122(1): 41-46.
    [16] CHU L B, XING X H, YU A F, et al. Enhanced ozonation of simulated dyestuff wastewater by microbubbles [J]. Chemosphere, 2007, 68(10): 1854-1860.
    [17] 张静, 杜亚威, 刘晓静, 等. 臭氧微气泡处理酸性大红3R废水特性研究[J]. 环境科学, 2015, 36(2): 584-589.
    [18] 曹原原. 炼油厂废气的排放与防治[J]. 中外能源, 2018, 23(4): 91-97.
    [19] BADER H, HOIGNé J. Determination of ozone in water by the indigo method [J]. Water Research, 1981, 15(4): 449-456.
    [20] 宋仁元, 张亚杰, 王唯一, 等. 水和废水标准检验法[M] . 北京: 中国建筑工业出版社, 1985: 368-370.
    [21] 任源, 韦朝海, 吴超飞, 等. 生物流化床A/O2工艺处理焦化废水过程中有机组分的GC/MS分析[J]. 环境科学学报, 2006, 26(11): 1785-1791.
    [22] TAKAHASHI M, CHIBA K, LI P. Free-radical generation from collapsing microbubbles in the absence of a dynamic stimulus [J]. Journal of Physical Chemistry B, 2007, 111(6): 1343-1347.
    [23] LI P, TAKAHASHI M, CHIBA K. Degradation of phenol by the collapse of microbubbles [J]. Chemosphere, 2009, 75(10): 1371-1375.
    [24] KHUNTIA S, MAJUMDER S K, GHOSH P. Quantitative prediction of generation of hydroxyl radicals from ozone microbubbles [J]. Chemical Engineering Research and Design, 2015, 98(6): 231-239.
    [25] SHAHIDI D, ROY R, AZZOUZ A. Advances in catalytic oxidation of organic pollutants-prospects for thorough mineralization by natural clay catalysts [J]. Applied Catalysis B: Environmental, 2015, 174-175(21): 277-292.
    [26] STAEHELIN J, HOIGNé J. Decomposition of ozone in water: Rate of initiation by hydroxide ions and hydrogen peroxide [J]. Environmental Science and Technology, 1982, 16(10): 676-681.
    [27] CHOI K, BAE S, LEE W. Degradation of off-gas toluene in continuous pyrite Fenton system [J]. Journal of Hazardous Materials, 2014, 280 (4): 31-37.
    [28] TAKAHASHI M. ζ potential of microbubbles in aqueous solutions: Electrical properties of the gas-water interface [J]. Journal of Physical Chemistry B, 2005, 109(46): 21858-21864.
  • 加载中
计量
  • 文章访问数:  3673
  • HTML全文浏览数:  3566
  • PDF下载数:  164
  • 施引文献:  0
出版历程
  • 刊出日期:  2019-01-08

水介质中微气泡臭氧化处理高浓度甲苯气体

  • 1. 河北科技大学环境科学与工程学院,石家庄 050018
  • 2. 河北省污染防治生物技术重点实验室,石家庄 050018
基金项目:

河北科技大学科学治霾及大气污染防治重点攻关预研专项课题

摘要: 高浓度挥发性有机物(VOC)气体高效处理技术是大气污染控制领域关注的重点。采用微气泡臭氧化在水介质中通过吸收-氧化过程对高浓度甲苯气体进行处理,考察微气泡臭氧化强化甲苯吸收-氧化去除性能、机理以及水介质pH对该工艺处理效果的影响。结果表明,微气泡能够强化甲苯气体在水介质中的吸收过程,氮气/甲苯微气泡在水介质中的甲苯去除率和吸收量均显著高于氮气/甲苯传统气泡,同时氮气/甲苯微气泡通过产生·OH氧化反应,使得平均甲苯氧化矿化率达到40.97%。微气泡臭氧化在水介质中对甲苯气体具有更高效的去除性能,臭氧/甲苯微气泡处理中甲苯平均去除率为97.08%,甲苯可被完全矿化而几乎无中间产物积累,其平均氧化矿化率为88.56%、平均臭氧利用率为82.54%、臭氧投加量与甲苯矿化量比值为1.26,处理性能显著优于臭氧/甲苯传统气泡处理。水介质pH对臭氧/甲苯微气泡处理甲苯气体具有一定影响,不同pH条件下甲苯气体去除率基本相当,但中性条件下甲苯氧化矿化率最高;碱性和酸性条件下甲苯氧化矿化率有所下降。微气泡臭氧化为高浓度VOC气体高效处理提供了新的解决途径。

English Abstract

参考文献 (28)

目录

/

返回文章
返回