磁粉在磁加载混凝深度除磷中的作用机理分析
Mechanism analysis of magnetic powder function in deep phosphorus removal by magnetic coagulation
-
摘要: 为适应天津新地(DB 12/599-2015)对出水总磷的排放需求,对天津某污水处理厂二沉池出水进行磁加载混凝工艺深度除磷实验。探讨了3种磁粉在粒径、表面电荷和磁感应强度等方面对混凝的影响;对比了磁加载混凝和常规混凝在沉降时间、絮体生长动力学的差异;分析了磁加载混凝和常规混凝对于不同形态磷的去除效果。结果表明,在磁加载混凝技术深度除磷中,磁粉的粒径、电性和磁性的协同作用是提高混凝效果的主要因素,粒径范围适中,表面带正电荷,磁感应强度越大越有利于污染物的去除。磁加载混凝技术可减少混凝剂用量、缩短沉降时间、提升去除效果,磁粉在混凝过程中起电性中和、表面吸附、絮凝成核、快速沉降的作用。Abstract: In order to meet the total phosphorus discharge demand by the new local standard (DB 12/599-2015) of Tianjin,the magnetic coagulation experiments were conducted to study the deep phosphorus removal from secondary effluent of a local sewage plant. Three kinds of magnetic powders were taken to study the effects of their particle size distribution, surface charge and magnetic induction intensity on coagulation. Then the differences in settling time, floc growth kinetics and removal performance on different phosphorus forms between magnetic coagulation and conventional coagulation were compared. Results show that the synergistic effect of particle size, electrical properties and magnetism of magnetic powder was the main factor to improve phosphorus removal effect of magnetic coagulation, and moderate particle size, positive surface charge and strong magnetic induction intensity were conducive to phosphorus removal. Magnetic coagulation technology can reduce coagulant dosage, shorten settling time and improve removal effect, and magnetic powder plays the roles of charge neutralization, surface adsorption, flocculation and nucleation, rapid sedimentation during the coagulation process.
-
[1] 冯鸣凤, 谢志成, 何立坤, 等. 天津市《城镇污水处理厂污染物排放标准》对工业园区污水排放体系的影响[J]. 环境科学与技术, 2016, 39(S2): 384-387. [2] 刘洪磊, 李安定, 邵晓龙, 等. 天津市《城镇污水处理厂污染物排放标准》解读 [J].城市环境与城市生态, 2015, 28(6): 22-28. [3] 李魁晓, 白雪, 李鑫玮, 等. 城市污水厂二级处理出水深度处理组合工艺研究[J]. 环境工程学报, 2012, 6(1): 63-67. [4] 李继香. 应用加载磁混凝处理微污染河水[J]. 环境工程学报, 2014, 8(7): 2901-2905. [5] 陈煜权, 何伟. 加载絮凝对微污染水的治理效果及应用前景[J]. 环境工程, 2016, 34(S1): 58-61. [6] GABRIELLI C, JAOUHARI R, MAURIN G, et al. Magnetic water treatment for scale prevention[J]. Water Research, 2001, 35(13): 3249-3259. [7] LI Y R, WANG J, ZHAO Y, et al. Research on magnetic seeding flocculation for arsenic removal by super conducting magnetic separation[J]. Separation and Purification Technology, 2010, 73(2): 264-270. [8] SHUICHIRO H, MASANORI W, TOSHIRO E. Effecs of an external magnetic field on the sedimentation of activated sludge[J]. World Journal of Microbiology and Biotechnology, 2001, 17(9): 279-285. [9] CHIN C J M, CHEN P W, WANG L J. Removal of nanoparticles from CMP wastewater by magnetic seeding aggregation[J]. Chemosphere, 2006, 63(10): 1809-1813. [10] 陈宇, 张明, 王周, 等. 纳米磁粉复配混凝剂深度处理木薯酒精废水研究[J]. 环境工程, 2017, 35(5): 11-15. [11] 张挺, 陈莎莎, 林雅逢. 有机微污染水磁混凝处理试验研究[J]. 环境科技, 2015, 28(2): 6-9. [12] 常青. 水处理絮凝学[M]. 北京: 化学工业出版社, 2011. [13] 国家环境保护局. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. [14] 王绍文. 惯性效应在絮凝中的动力学作用[J]. 中国给水排水, 1998, 14(2): 13-16. [15] WANG Y, REARDON E J. Activation and regeneration of a soil sorbent for defluoridation of drinking water[J]. Applied Geochemistry, 2001, 16(5): 531-539. [16] 王东升. 微污染原水强化混凝技术[M]. 北京: 科学出版社, 2009. [17] 程方, 秦涛, 赵现勇, 等. 加药量和水力搅拌速度对雨水混凝效果的影响[J]. 环境工程学报, 2012, 6(11): 3905-3909.
计量
- 文章访问数: 4866
- HTML全文浏览数: 4789
- PDF下载数: 265
- 施引文献: 0