电渗透耦合Fe2+-过硫酸钠污泥脱水过程中EPS的变化特性

李亚林, 刘蕾, 张景玉, 任萌萌, 李可心, 杨瑞丽. 电渗透耦合Fe2+-过硫酸钠污泥脱水过程中EPS的变化特性[J]. 环境工程学报, 2019, 13(2): 431-440. doi: 10.12030/j.cjee.201807234
引用本文: 李亚林, 刘蕾, 张景玉, 任萌萌, 李可心, 杨瑞丽. 电渗透耦合Fe2+-过硫酸钠污泥脱水过程中EPS的变化特性[J]. 环境工程学报, 2019, 13(2): 431-440. doi: 10.12030/j.cjee.201807234
LI Yalin, LIU Lei, ZHANG Jingyu, REN Mengmeng, LI Kexin, YANG Ruili. Variation characteristics of extracellular polymeric substances in sewage sludge dewatering by coordination of electro-osmotic and Fe2+- sodium persulfate oxidation process[J]. Chinese Journal of Environmental Engineering, 2019, 13(2): 431-440. doi: 10.12030/j.cjee.201807234
Citation: LI Yalin, LIU Lei, ZHANG Jingyu, REN Mengmeng, LI Kexin, YANG Ruili. Variation characteristics of extracellular polymeric substances in sewage sludge dewatering by coordination of electro-osmotic and Fe2+- sodium persulfate oxidation process[J]. Chinese Journal of Environmental Engineering, 2019, 13(2): 431-440. doi: 10.12030/j.cjee.201807234

电渗透耦合Fe2+-过硫酸钠污泥脱水过程中EPS的变化特性

  • 基金项目:

    河南省科技攻关项目162102310402

    郑州市科技攻关项目20150237

    河南工程学院博士基金项目D2015008河南省科技攻关项目(162102310402)

    郑州市科技攻关项目(20150237)

    河南工程学院博士基金项目(D2015008)

Variation characteristics of extracellular polymeric substances in sewage sludge dewatering by coordination of electro-osmotic and Fe2+- sodium persulfate oxidation process

  • Fund Project:
  • 摘要: 为了考察电渗透耦合Fe2+-过硫酸钠污泥深度脱水的机制,采用自制装置对市政污水处理厂的污泥进行了脱水研究。系统研究了在不同电压梯度、机械压力、过硫酸钠投加量、Fe2+与过硫酸钠比例、阴阳极间距等操作条件下,污泥中胞外聚合物(EPS)的组成及分布对污泥脱水效果的影响。结果表明,电渗透耦合Fe2+-过硫酸钠可以改善污泥的脱水效果,过硫酸钠经过Fe2+和热活化作用产生的硫酸根自由基对污泥中EPS的破坏作用明显,从而造成EPS特性改变。其中,紧密型胞外聚合物(TB-EPS)中的蛋白质和多糖、松散型胞外聚合物(LB-EPS)中的蛋白质及各层EPS中的蛋白质/多糖与污泥脱水效果存在显著相关性;黏性胞外聚合物(S-EPS)和LB-EPS中的多糖与污泥脱水效果存在显著相关性。TB-EPS、LB-EPS及其中含有的蛋白质和多糖含量是影响污泥电渗透耦合Fe2+-过硫酸钠脱水效果的主要因素。
  • 加载中
  • [1] YU W B, YANG J K, WU X, et al. Study on dewaterability limit and energy consumption in sewage sludge electro-dewatering by in-situ linear sweep voltammetry analysis[J]. Chemical Engineering Journal, 2017, 317(1): 980-987.
    [2] LIU Y, HERBERT H P F. Influences of extracellular polymeric substances (EPS) on flocculation, settling, and dewatering of activated sludge[J]. Critical Reviews in Environmental Science & Technology, 2003, 33(3): 237-273.
    [3] HOUGHTON J I, STEPHENSON T. Effect of influent organic content on digested sludge extracellular polymer content and dewaterability[J]. Water Research, 2002, 36(14): 3620-3628.
    [4] SEVIOUR T, YUAN Z G, VAN LOOSDRECHT M C M, et al. Aerobic sludge granulation: A tale of two polysaccharides[J]. Water Research, 2012, 46(15): 4803-4813.
    [5] 唐海, 沙俊鹏, 欧阳龙, 等. Fe(Ⅱ)活化过硫酸盐氧化破解剩余污泥[J]. 化工学报, 2015, 66(2): 785-792.
    [6] LU J, RAO S, LE T, et al. Increasing cake soli of cellulosic sludge through enzyme-assisted dewatering[J]. Process Biochemistry, 2011, 46(1): 353-357.
    [7] ZHANG G, HE J, ZHANG P, et al. Ultrasonic reduction of excess sludge from activated sludge system II: Urban sewage treatment[J]. Journal of Hazardous Materials, 2009, 164(2): 1105-1109.
    [8] RUIZ-HERNANDO M, MARTINEZ-ELORZA G, LABANDA J, et al. Dewaterability of sewage sludge by ultrasonic, thermal and chemical treatments[J]. Chemical Engineering Journal, 2013, 230(16): 102-110.
    [9] CONRARDY J B, VAXELAIRE J, OLIVIER J. Electro-dewatering of activated sludge: Electrical resistance analysis[J]. Water Research, 2016, 100: 194-200.
    [10] LI Y, YUAN X, WU Z, et al. Enhancing the sludge dewaterability by electrolysis/electrocoagulation combined with zero-valent iron activated persulfate process[J]. Chemical Engineering Journal, 2016, 303: 636-645.
    [11] ZHEN G, LU X, LI Y, et al. Innovative combination of electrolysis and Fe(II)-activatedpersulfate oxidation for improving the dewaterability of waste activated sludge[J]. Bioresource Technology, 2013, 136: 654-663.
    [12] 李亚林, 刘蕾, 侯金金, 等. 电渗透-过硫酸铵氧化协同强化污泥深度脱水[J]. 化工进展, 2017, 36(5): 1919-1926.
    [13] 李亚林, 刘蕾, 张毅, 等. 电渗透/Fe-过硫酸盐氧化协同强化污泥深度脱水[J]. 化工学报, 2016, 67(9): 4013-4019.
    [14] 李亚林, 戚蓝月, 胡听听, 等. 电渗透-过硫酸盐氧化对污泥胞外聚合物的影响[J]. 工业安全与环保, 2017, 43(6): 93-97.
    [15] LI X Y, YANG S F. Influence of loosely bound extracellular polymeric substances (EPS) on the flocculation, sedimentation and dewaterability of activated sludge[J]. Water Research, 2007, 41(5): 1022-1030.
    [16] FR?LUND B, GRIEBE T, NIELSEN P H. Enzymatic activity in the activated sludge sludge flocs matrix[J]. Applied Microbiology Biotechnology, 1995, 43(4): 755-761.
    [17] YU G H, HE P J, SHAO L M, et al. Extracellular proteins, polysaccharides and enzymes impact on sludge aerobic digestion after ultrasonic pretreatment[J]. Water Research, 2008, 42(8): 1925-1934.
    [18] TAN C, GAO N, DENG Y, et al. Heat-activated persulfate oxidation of diuron in water[J]. Chemical Engineering Journal, 2012, 203(5): 294-300.
    [19] MAHMOUD A, OLIVER J, VAXELAIRE J, et al. Electro-dewatering of wastewater sludge: Influence of the operating conditions and their interactions effects[J]. Water Research, 2011, 45(9): 2795-2810.
    [20] ZHEN G, LU X, ZHAO Y, et al. Enhanced dewaterability of sewage sludge in the presence of Fe(II)-activated persulfate oxidation[J]. Bioresource Technology, 2012, 116: 259-265.
    [21] CETIN S, ERDINCLER A. The role of carbohydrate and protein parts of extracellular polymeric substances on the dewaterability of biological sludges[J]. Water Science & Technology, 2004, 50(9): 49-56.
    [22] MORGAN J W, FORSTER C F, EVISON L. A comparative study of the nature of biopolymers extracted from anaerobic and activated sludges[J]. Water Research, 1990, 24(6):743-750.
    [23] OLIVIER J, MAHMOUD A, VAXELAIRE J, et al. Electro-dewatering of anaerobically digested and activated sludges: An energy aspect analysis[J]. Drying Technology, 2014, 32(9): 1091-1103.
    [24] SHI Y F, YANG J K, MAO W, et al. Influence of Fe2+-sodium persulfate on extracellular polymeric substances and dewaterability of sewage sludge[J]. Desalination and Water Treatment, 2015, 53(10): 2655-2663.
    [25] ZHEN G, LU X, NIU J, et al. Inhibitory effects of a shock load of Fe(II)-mediated persulfate oxidation on waste activated sludge anaerobic digestion[J]. Chemical Engineering Journal, 2013, 233: 274-281.
    [26] LIANG C, BRUELL C J, MARLEY M C, et al. Persulfate oxidation for in situ remediation of TCE(Ⅱ): Activated by chelated ferrous ion[J]. Chemosphere, 2004, 55(9): 1225-1233.
    [27] OH S Y, KIM H W, PARK J M, et al. Oxidation of polyvinyl alcohol by persulfate activated with heat, Fe2+, and zero-valent iron[J]. Journal of Hazardous Materials, 2009, 168(1) :346-351.
    [28] JIYEON H, LEI Z, SUNKEUN S, et al. Protein recovery from excess sludge for its use as animal feed[J]. Bioresource Technology, 2008, 99(18): 8949-8954.
  • 加载中
计量
  • 文章访问数:  2615
  • HTML全文浏览数:  2565
  • PDF下载数:  111
  • 施引文献:  0
出版历程
  • 刊出日期:  2019-02-02

电渗透耦合Fe2+-过硫酸钠污泥脱水过程中EPS的变化特性

  • 1. 河南工程学院资源与环境学院,郑州 451191
基金项目:

河南省科技攻关项目162102310402

郑州市科技攻关项目20150237

河南工程学院博士基金项目D2015008河南省科技攻关项目(162102310402)

郑州市科技攻关项目(20150237)

河南工程学院博士基金项目(D2015008)

摘要: 为了考察电渗透耦合Fe2+-过硫酸钠污泥深度脱水的机制,采用自制装置对市政污水处理厂的污泥进行了脱水研究。系统研究了在不同电压梯度、机械压力、过硫酸钠投加量、Fe2+与过硫酸钠比例、阴阳极间距等操作条件下,污泥中胞外聚合物(EPS)的组成及分布对污泥脱水效果的影响。结果表明,电渗透耦合Fe2+-过硫酸钠可以改善污泥的脱水效果,过硫酸钠经过Fe2+和热活化作用产生的硫酸根自由基对污泥中EPS的破坏作用明显,从而造成EPS特性改变。其中,紧密型胞外聚合物(TB-EPS)中的蛋白质和多糖、松散型胞外聚合物(LB-EPS)中的蛋白质及各层EPS中的蛋白质/多糖与污泥脱水效果存在显著相关性;黏性胞外聚合物(S-EPS)和LB-EPS中的多糖与污泥脱水效果存在显著相关性。TB-EPS、LB-EPS及其中含有的蛋白质和多糖含量是影响污泥电渗透耦合Fe2+-过硫酸钠脱水效果的主要因素。

English Abstract

参考文献 (28)

目录

/

返回文章
返回