针对含砷硫酸烧渣酸浸液的铁盐沉淀固砷

王永良, 肖力, 韩培伟, 鲁永刚, 钱鹏, 叶树峰. 针对含砷硫酸烧渣酸浸液的铁盐沉淀固砷[J]. 环境工程学报, 2019, 13(1): 162-168. doi: 10.12030/j.cjee.201807091
引用本文: 王永良, 肖力, 韩培伟, 鲁永刚, 钱鹏, 叶树峰. 针对含砷硫酸烧渣酸浸液的铁盐沉淀固砷[J]. 环境工程学报, 2019, 13(1): 162-168. doi: 10.12030/j.cjee.201807091
WANG Yongliang, XIAO Li, HAN Peiwei, LU Yonggang, QIAN Peng, YE Shufeng. Arsenic fixation in acid leaching solution obtained from arsenic-containing pyrite cinder by iron salt precipitation[J]. Chinese Journal of Environmental Engineering, 2019, 13(1): 162-168. doi: 10.12030/j.cjee.201807091
Citation: WANG Yongliang, XIAO Li, HAN Peiwei, LU Yonggang, QIAN Peng, YE Shufeng. Arsenic fixation in acid leaching solution obtained from arsenic-containing pyrite cinder by iron salt precipitation[J]. Chinese Journal of Environmental Engineering, 2019, 13(1): 162-168. doi: 10.12030/j.cjee.201807091

针对含砷硫酸烧渣酸浸液的铁盐沉淀固砷

  • 基金项目:

    中国科学院重点部署项目(ZDRW-ZS-2018-1)

Arsenic fixation in acid leaching solution obtained from arsenic-containing pyrite cinder by iron salt precipitation

  • Fund Project:
  • 摘要: 为考察含砷硫酸烧渣中酸浸脱砷效果和铁盐沉淀固砷行为,采用常温常压酸浸法脱除硫酸烧渣中的砷,并对进入浸出液中的砷以铁盐沉淀的形式脱除,进而对沉淀渣的浸出毒性进行研究。同时,研究了磨矿细度、酸浓度、固液比、浸出时间对硫酸烧渣中砷脱除效率的影响。结果表明,通过控制浸出参数可以将硫酸烧渣中砷的质量分数降低到0.2%以下,通过调节浸出液的pH和Fe/As摩尔比将其中的砷以沉淀的形式脱除。当Fe/As > 2、pH = 4~6时,溶液中砷浓度降到了0.5 mg·L-1以下。沉淀砷渣主要是以非晶态的形式存在,提高铁砷比有利于提高砷渣稳定性,从而降低浸出毒性。在Fe/As = 3、pH = 6.04~6.22的条件下,得到的沉淀渣的浸出毒性为0.711 mg·L-1。因此,通过酸浸脱除硫酸烧渣中的砷,进而采用铁盐沉淀的方法能够实现硫酸烧渣中砷的安全处置。
  • 加载中
  • [1] CHEN D, GUO H, XU J, et al. Recovery of iron from pyrite cinder containing non-ferrous metals using high-temperature chloridizing-reduction-magnetic separation [J]. Metallurgical and Materials Transactions B, 2017, 48B: 933-942.
    [2] 金程, 李登新. 硫酸烧渣中铁的综合利用研究进展[J]. 金属矿山, 2011(10): 162-165.
    [3] 叶志平, 何国伟. 硫酸渣资源化及其以废治废技术研究[J]. 华南师范大学学报 (自然科学版), 2010, 42(2): 72-75.
    [4] 王全亮. 某硫酸烧渣提纯降杂工艺试验研究[J].有色金属(选矿部分), 2009(5): 21-25.
    [5] LIN Z, QVARFORT U. Predicting the mobility of Zn, Fe, Cu, Pb, Cd from roasted sulfide (pyrite) residues: A case study of wastes from the sulfuric acid industry in Sweden [J]. Waste Management, 1997, 16: 671-681.
    [6] DING J, HAN P, LV C, et al. Utilization of gold-bearing and iron-rich pyrite cinder via a chlorination-volatilization process [J]. International Journal of Minerals, Metallurgy and Materials, 2017, 24(11): 1-10.
    [7] AIP I, DEVECI H, YAZICI E Y, et al. Potential use of pyrite cinders as raw material in cement production: Results of industrial scale trial operations [J]. Journal of Hazardous Materials, 2009, 166 (1): 144-149.
    [8] YANG C, CHEN Y, PENG P, et al. Trace element transformations and partitioning during the roasting of pyrite ores in the sulfuric acid industry [J]. Journal of Hazardous Materials, 2009, 167: 835-845.
    [9] GIUNTI M, BARONI D, BACCI E. Hazard assessment to workers of trace metal content in pyrite cinders [J]. Bulletin of Environmental Contamination and Toxicology, 2004, 72: 352-357.
    [10] LONG H, CHUN T, DI Z, et al. Preparation of metallic iron powder from pyrite cinder by carbothermic reduction and magnetic separation [J]. Metals, 2016, 6(4): 88-96.
    [11] ZHU D Q, CHUN T J, PAN J, et al. Preparation of oxidised pellets using pyrite cinders as raw material [J]. Ironmaking & Steelmaking, 2013, 40: 430-435.
    [12] WANG J, LUO L, KONG H, et al. The arsenic removal from molten steel [J]. High Temperature Materials and Processes, 2011, 30: 171-173.
    [13] WANG Y, XIAO L, LIU Y, et al. Alkalic leaching and stabilization of arsenic from pyrite cinders [J]. The Open Waste Management Journal, 2017, 10: 41-50.
    [14] 常耀超, 徐晓辉, 王云. 高砷硫酸烧渣脱砷及高温氯化回收金银 [J]. 有色金属(冶炼部分), 2015(6): 46-49.
    [15] SHI Z, WANG M, ZHANG G, et al. Leaching and kinetic modeling of pyrite cinder in sulphuric acid [J]. Asian Journal of Chemistry, 2013, 25(1): 105-109.
    [16] 张广伟, 徐政, 李岩. 利用含砷硫酸烧渣生产铁精矿的试验研究[J]. 矿业研究与开发, 2013, 33(1): 34-37.
    [17] CHOONG T, CHUAH T, ROBIAH Y, et al. Arsenic toxicity, health hazards and removal techniques from water: An overview [J]. Desalination, 2007, 217: 139-166.
    [18] 游洋, 闵小波, 彭兵, 等. 碱性高砷渣晶化稳定处理技术研究 [J]. 有色金属科学与工程, 2015, 6(6): 24-28.
    [19] 张明琴, 周新涛, 罗中秋, 等. 石灰-铁盐法处理工业含砷废水研究进展 [J]. 硅酸盐通报,2016, 35(8): 2447-2453.
    [20] KRAUSE E, ETTEL V. Solubilities and stabilities of ferric arsenate compounds [J]. Hydrometallurgy, 1989, 22(3): 311-337.
    [21] FUJITA T, TAGUCHI R, ABUMIYA M, et al.Effect of pH on atmospheric scorodite synthesis by oxidation of ferrous ions: Physical properties and stability of the scorodite [J]. Hydrometallurgy, 2009, 96: 189-198.
    [22] DAENZER R, XU L, DOERFELT C, et al. Precipitation behaviour of As(V) during neutralization of acidic Fe(II)-As(V) solutions in batch and continuous modes [J]. Hydrometallurgy, 2014, 146: 40-47.
    [23] SINGHANIA S, WANG Q, FILIPPOU D, et al. Acidity, valency and third-ion effects on the precipitation of scorodite from mixed sulfate solutions under atmospheric-pressure conditions [J]. Metallurgical and Materials Transactions B, 2006, 37(2): 189-197.
    [24] TWIDWELL L G, MCLOSKEY J W. Removing arsenic from aqueous solution and longterm product storage [J]. JOM, 2011, 63 (8): 94-100.
  • 加载中
计量
  • 文章访问数:  2887
  • HTML全文浏览数:  2821
  • PDF下载数:  132
  • 施引文献:  0
出版历程
  • 刊出日期:  2019-01-08

针对含砷硫酸烧渣酸浸液的铁盐沉淀固砷

  • 1. 中国科学院过程工程研究所,多相复杂系统国家重点实验室,北京 100190
  • 2. 中国科学院大学化学与化工学院,北京 100049
基金项目:

中国科学院重点部署项目(ZDRW-ZS-2018-1)

摘要: 为考察含砷硫酸烧渣中酸浸脱砷效果和铁盐沉淀固砷行为,采用常温常压酸浸法脱除硫酸烧渣中的砷,并对进入浸出液中的砷以铁盐沉淀的形式脱除,进而对沉淀渣的浸出毒性进行研究。同时,研究了磨矿细度、酸浓度、固液比、浸出时间对硫酸烧渣中砷脱除效率的影响。结果表明,通过控制浸出参数可以将硫酸烧渣中砷的质量分数降低到0.2%以下,通过调节浸出液的pH和Fe/As摩尔比将其中的砷以沉淀的形式脱除。当Fe/As > 2、pH = 4~6时,溶液中砷浓度降到了0.5 mg·L-1以下。沉淀砷渣主要是以非晶态的形式存在,提高铁砷比有利于提高砷渣稳定性,从而降低浸出毒性。在Fe/As = 3、pH = 6.04~6.22的条件下,得到的沉淀渣的浸出毒性为0.711 mg·L-1。因此,通过酸浸脱除硫酸烧渣中的砷,进而采用铁盐沉淀的方法能够实现硫酸烧渣中砷的安全处置。

English Abstract

参考文献 (24)

目录

/

返回文章
返回