城市生活垃圾焚烧飞灰与电解锰渣烧制陶粒

胡超超, 王里奥, 詹欣源, 龚健, 柏继松, 杨鲁. 城市生活垃圾焚烧飞灰与电解锰渣烧制陶粒[J]. 环境工程学报, 2019, 13(1): 177-185. doi: 10.12030/j.cjee.201806068
引用本文: 胡超超, 王里奥, 詹欣源, 龚健, 柏继松, 杨鲁. 城市生活垃圾焚烧飞灰与电解锰渣烧制陶粒[J]. 环境工程学报, 2019, 13(1): 177-185. doi: 10.12030/j.cjee.201806068
HU Chaochao, WANG Li'ao, ZHAN Xinyuan, GONG Jian, BAI Jisong, YANG Lu. Preparation of ceramsite with MSWI fly ash and electrolytic manganese residues[J]. Chinese Journal of Environmental Engineering, 2019, 13(1): 177-185. doi: 10.12030/j.cjee.201806068
Citation: HU Chaochao, WANG Li'ao, ZHAN Xinyuan, GONG Jian, BAI Jisong, YANG Lu. Preparation of ceramsite with MSWI fly ash and electrolytic manganese residues[J]. Chinese Journal of Environmental Engineering, 2019, 13(1): 177-185. doi: 10.12030/j.cjee.201806068

城市生活垃圾焚烧飞灰与电解锰渣烧制陶粒

  • 基金项目:

    重庆市教委项目(shljzyh2017-001)

Preparation of ceramsite with MSWI fly ash and electrolytic manganese residues

  • Fund Project:
  • 摘要: 为减少城市生活垃圾焚烧飞灰(简称飞灰)与电解锰渣中的重金属对环境的危害,考察了利用两者辅以粉煤灰烧制陶粒的可行性。通过单因素实验确定原材料最佳配比以及最宜烧制工艺条件,并对焙烧后陶粒的微观形貌以及重金属浸出浓度进行分析。结果表明:随着飞灰掺量的增加,陶粒的颗粒强度与堆积密度降低,1 h吸水率升高;确定最佳原料配比为飞灰掺量12%、电解锰渣掺量43%、粉煤灰掺量45%;确定最宜烧制工艺条件为预热温度600 ℃、焙烧温度1 140 ℃。在最佳条件下,烧制陶粒的颗粒强度为769 N,堆积密度为687 kg·m-3,1 h吸水率为6.44%。通过微观结构观察,陶粒表面致密呈釉化,内部呈现多孔隙结构。陶粒中重金属浸出浓度均低于国家标准。此陶粒的使用可为飞灰与电解锰渣资源化利用提供参考。
  • 加载中
  • [1] 中国环境保护产业协会城市生活垃圾处理专业委员会. 城市生活垃圾处理行业2017年发展综述[J]. 中国环保产业, 2017(4): 9-15.
    [2] ABANADES S, FLAMANT G, GAGNEPAIN B, et al. Fate of heavy metals during municipal solid waste incineration[J]. Waste Management & Research, 2002, 20(1): 55-68.
    [3] RIMAITYTE I, DENAFAS G, JAGER J. Report: Environmental assessment of Darmstadt (Germany) municipal waste incineration plant[J]. Waste Management & Research, 2007, 25(2): 177-182.
    [4] CHENG H, HU Y. Municipal solid waste (MSW) as a renewable source of energy: Current and future practices in China[J]. Bioresource Technology, 2010, 101(11): 3816-3824.
    [5] PAN Y, YANG L, ZHOU J, et al. Characteristics of dioxins content in fly ash from municipal solid waste incinerators in China[J]. Chemosphere, 2013, 92(7): 765-771.
    [6] POLETTINI A, POMI R, TRINCI L, et al. Engineering and environmental properties of thermally treated mixtures containing MSWI fly ash and low-cost additives[J]. Chemosphere, 2004, 56(10): 901-910.
    [7] 刘清才, 鹿存房, 黄本生,等. 城市生活垃圾焚烧飞灰的熔融分离处理[J]. 环境工程学报, 2008, 2(10): 1403-1406.
    [8] WANG F H, ZHANG F, CHEN Y J, et al. A comparative study on the heavy metal solidification/stabilization performance of four chemical solidifying agents in municipal solid waste incineration fly ash[J]. Journal of Hazardous Materials, 2015, 300:451-458.
    [9] GUO X, SHI H, HU W, et al. Durability and microstructure of CSA cement-based materials from MSWI fly ash[J]. Cement & Concrete Composites, 2014, 46(2): 26-31.
    [10] NA W. Production of sludge ceramsite from sewage sludge, municipal solid waste incineration fly ash and clay[J]. Nature Environment and Pollution Technology, 2015, 14(1): 153-156.
    [11] TAN W F, WANG L, HUANG C, et al. Municipal solid waste incineration fly ash sintered lightweight aggregates and kinetics model establishment[J]. International Journal of Environmental Science and Technology, 2013, 10(3): 465-472.
    [12] HU N, ZHENG J, DING D, et al. Metal pollution in huayuan river in hunan province in china by manganese sulphate waste residue[J]. Bulletin of Environmental Contamination and Toxicology, 2009, 83(4): 583-590.
    [13] SILVA M A R, MATER L, SOUZA-SIERRA M M, et al. Small hazardous waste generators in developing countries: Use of stabilization/solidification process as an economic tool for metal wastewater treatment and appropriate sludge disposal[J]. Journal of Hazardous Materials, 2007, 147(3): 986-990.
    [14] NING D, WANG F, ZHOU C B, et al. Analysis of pollution materials generated from electrolytic manganese industries in China[J]. Resources Conservation & Recycling, 2010, 54(8): 506-511.
    [15] 胡春燕, 于宏兵. 电解锰渣制备陶瓷砖[J]. 硅酸盐通报, 2010, 29(1): 112-115.
    [16] 张金龙, 彭兵, 柴立元, 等. 电解锰渣-页岩-粉煤灰烧结砖的研制[J]. 环境科学与技术, 2011, 34(1): 144-147.
    [17] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 轻集料及其试验方法: GB/T 17431-2010[S]. 北京: 中国标准出版社, 2010.
    [18] 国家环境保护总局. 固体废物浸出毒性浸出方法 醋酸缓冲溶液法: HJ/T 300-2007[S]. 北京: 中国环境科学出版社, 2007.
    [19] 樊臻. 污泥陶粒的制备及其机理研究[D]. 扬州: 扬州大学, 2015.
    [20] 高礼雄, 丁庆军, 王发洲. 粉煤灰陶粒的研制[J]. 河南建材, 2002(1): 3-4.
    [21] 谭文发. 城市生活垃圾焚烧飞灰特性与资源化利用: 烧制轻质陶粒研究[D]. 重庆: 重庆大学, 2013.
    [22] 罗忠涛, 肖宇领, 杨久俊, 等. 垃圾焚烧飞灰有毒重金属固化稳定技术研究综述[J]. 环境污染与防治, 2012, 34(8): 58-62.
  • 加载中
计量
  • 文章访问数:  3892
  • HTML全文浏览数:  3819
  • PDF下载数:  171
  • 施引文献:  0
出版历程
  • 刊出日期:  2019-01-08

城市生活垃圾焚烧飞灰与电解锰渣烧制陶粒

  • 1. 重庆大学资源及环境科学学院,重庆 400044
  • 2. 重庆大学煤矿灾害动力学与控制国家重点实验室,重庆 400044
  • 3. 重庆市生活垃圾资源化处理协同创新中心,重庆 401331
基金项目:

重庆市教委项目(shljzyh2017-001)

摘要: 为减少城市生活垃圾焚烧飞灰(简称飞灰)与电解锰渣中的重金属对环境的危害,考察了利用两者辅以粉煤灰烧制陶粒的可行性。通过单因素实验确定原材料最佳配比以及最宜烧制工艺条件,并对焙烧后陶粒的微观形貌以及重金属浸出浓度进行分析。结果表明:随着飞灰掺量的增加,陶粒的颗粒强度与堆积密度降低,1 h吸水率升高;确定最佳原料配比为飞灰掺量12%、电解锰渣掺量43%、粉煤灰掺量45%;确定最宜烧制工艺条件为预热温度600 ℃、焙烧温度1 140 ℃。在最佳条件下,烧制陶粒的颗粒强度为769 N,堆积密度为687 kg·m-3,1 h吸水率为6.44%。通过微观结构观察,陶粒表面致密呈釉化,内部呈现多孔隙结构。陶粒中重金属浸出浓度均低于国家标准。此陶粒的使用可为飞灰与电解锰渣资源化利用提供参考。

English Abstract

参考文献 (22)

目录

/

返回文章
返回