PAHs污染土壤的热修复可行性

陈星, 宋昕, 吕正勇, 任家强, 丁达, 林娜, 魏昌龙, 扶恒. PAHs污染土壤的热修复可行性[J]. 环境工程学报, 2018, 12(10): 2833-2844. doi: 10.12030/j.cjee.201804029
引用本文: 陈星, 宋昕, 吕正勇, 任家强, 丁达, 林娜, 魏昌龙, 扶恒. PAHs污染土壤的热修复可行性[J]. 环境工程学报, 2018, 12(10): 2833-2844. doi: 10.12030/j.cjee.201804029
CHEN Xing, SONG Xin, LYU Zhengyong, REN Jiaqiang, DING Da, LIN Na, WEI Changlong, FU Heng. Feasibility of thermal remediation of soil contaminated with PAHs[J]. Chinese Journal of Environmental Engineering, 2018, 12(10): 2833-2844. doi: 10.12030/j.cjee.201804029
Citation: CHEN Xing, SONG Xin, LYU Zhengyong, REN Jiaqiang, DING Da, LIN Na, WEI Changlong, FU Heng. Feasibility of thermal remediation of soil contaminated with PAHs[J]. Chinese Journal of Environmental Engineering, 2018, 12(10): 2833-2844. doi: 10.12030/j.cjee.201804029

PAHs污染土壤的热修复可行性

  • 基金项目:

    中国科学院重点部署项目(KFZD-SW-303)

    中国科学院科技服务网络计划(STS计划)项目(KFJ-STS-ZDTP-039)

Feasibility of thermal remediation of soil contaminated with PAHs

  • Fund Project:
  • 摘要: 以某煤制气厂污染场地中16种US EPA优先控制多环芳烃(Σ16 PAHs)为目标污染物进行了热修复批量实验和可行性实验。热修复批量实验结果表明,当热修复温度为400 ℃、加热时间为8 h时,土壤中的Σ16 PAHs去除率达99.9%。热修复可行性实验选择重污染、中污染和轻污染土壤以400 ℃作为目标温度,恒温72 h进行实验。热修复前后不同程度污染土壤的Σ16 PAHs的总去除率均可达到99.9%,但重污染土壤浓度非常高,部分苯并类物质未达到修复目标值,需进一步延长加热时间或提高加热温度保证达到修复目标值。土壤土工参数影响分析结果表明,热修复后土壤颗粒粒径呈增大趋势,土壤稳定性、抗压强度均增强。此外,土壤中可溶性盐含量增多,盐渍化程度增大。
  • 加载中
  • [1] MAGI E, BIANCO R, IANNI C, et al.Distribution of polycyclic aromatic hydrocarbons in the sediments of the Adriatic Sea[J].Environmental Pollution, 2002, 119(1): 91-98 10.1016/S0269-7491(01)00321-9
    [2] 杨发忠, 颜阳, 张泽志, 等. 多环芳烃研究进展[J]. 云南化工, 2005, 32(2): 44-48
    [3] 张惠灵, 王宇, 周杨, 等. 某焦化厂PM2.5中多环芳烃的排放特征及其对周边环境影响[J]. 环境工程学报, 2017, 10(10): 5571-5576 10.12030/j.cjee.201611095
    [4] 刘志阳. 多环芳烃污染土壤修复技术研究进展[J]. 污染防治技术, 2015, 28(3): 19-21
    [5] VELA N, MARTíNEZ-MENCHóN M, NAVARRO G, et al.Removal of polycyclic aromatic hydrocarbons (PAHs) from groundwater by heterogeneous photocatalysis under natural sunlight[J].Journal of Photochemistry and Photobiology A: Chemistry, 2012, 232: 32-40 10.1016/j.jphotochem.2012.02.003
    [6] 龚香宜, 何炎志, 孙云雷. 江汉平原四湖流域上区地下水中多环芳烃分布特征与源解析[J]. 环境科学学报, 2015, 35(3): 789-796
    [7] FLOTRON V, DELTEIL C, PADELLEC Y, et al.Removal of sorbed polycyclic aromatic hydrocarbons from soil, sludge and sediment samples using the Fenton’s reagent process[J].Chemosphere, 2005, 59(10): 1427-1437 10.1016/j.chemosphere.2004.12.065
    [8] BAVEL V B.Comparison of Fenton’s reagent and ozone oxidation of polycyclic aromatic hydrocarbons in aged contaminated soils[J].Journal of Soils & Sediments, 2006, 6(4): 208–214
    [9] BROWN G S, BARTON L L, THOMSON B M.Permanganate oxidation of sorbed polycyclic aromatic hydrocarbons[J].Waste Management, 2003, 23(8): 737-740 10.1016/S0956-053X(02)00119-8
    [10] FERRARESE E, ANDREOTTOLA G, OPREA I A.Remediation of PAH-contaminated sediments by chemical oxidation[J].Journal of Hazardous Materials, 2008, 152(1): 128-139 10.1016/j.jhazmat.2007.06.080
    [11] 邹德勋, 骆永明, 徐凤花. 土壤环境中多环芳烃的微生物降解及联合生物修复[J]. 土壤, 2007, 39(3): 334-340
    [12] DAVIS E L.Ground water issue: How heat can enhance in-situ soil and aquifer remediation-important chemical properties and guidance on choosing the appropriate technique [R].EPA, Office of Solid Waste and Emergency Response, Washington, D.C., 1997
    [13] LEMMING G, HAUSCHILD M Z, CHAMBON J, et al.Environmental impacts of remediation of a trichloroethene contaminated site: Life cycle assessment of remediation alternatives[J].Environmental Science & Technology, 2010, 44: 9163-9169
    [14] GAO Y F, YANG H, ZHAN X H, et al.Scavenging of BHCs and DDTs from soil by thermal desorption and solvent washing [J].Environmental Science and Pollution Research, 2013, 20: 1482-1492 10.1007/s11356-012-0991-0
    [15] MCALEXANDER B L, KREMBS F J, CARDENOSA MENDOZA M.Treatability testing for weathered hydrocarbons in soils: Bioremediation, soil washing, chemical oxidation, and thermal desorption [J].Soil and Sediment Contamination, 2015, 24: 882-897 10.1080/15320383.2015.1064088
    [16] HUNG P C, CHANG S H, OUYANG C C, et al.Simultaneous removal of PCDD/Fs, pentachlorophenol and mercury from contaminated soil [J].Chemosphere, 2016, 144: 50-58 10.1016/j.chemosphere.2015.08.058
    [17] LIM M W, LAU E V, POH P E.A comprehensive guide of remediation technologies for oil contaminated soil: Present works and future directions [J].Marine Pollution Bulletin, 2016, 109: 14-45 10.1016/j.marpolbul.2016.04.023
    [18] MECHATI F, ROTH E, RENAULT V, et al.Pilot scale and theoretical study of thermal remediation of soils[J].Environmental Engineering Science, 2004, 21:361-370 10.1089/109287504323067003
    [19] 中华人民共和国环境保护部. 土壤和沉积物 多环芳烃的测定 高效液相色谱法: HJ 784-2016[S]. 北京: 中国环境科学出版社, 2016
    [20] 中华人民共和国水利部. 土工试验方法标准: GB/T 50123-1999[S]. 北京:中国计划出版社, 1999
    [21] 北京市环境保护局. 场地土壤环境风险评价筛选值: DB11/T 811-2011[S]. 北京: 中国农业出版社, 2012
    [22] O’BRIEN P L, DESUTTER T M, CASEY F X, et al.Implications of using thermal desorption to remediate contaminated agricultural soil: Physical characteristics and hydraulic processes[J].Journal of Environmental Quality, 2016, 45(4): 1430-1436 10.2134/jeq2015.12.0607
    [23] CHEN H E, JIANG Y L, ZHANG W, et al.Experimental study of the stabilization effect of cement on diesel-contaminated soil[J].Quarterly Journal of Engineering Geology and Hydrogeology 2017, 50(2): 199-205 10.1144/qjegh2016-115
    [24] 南京水利科学研究院. 土工试验规程:SL 237-1999[S]. 北京:中国水利水电出版社, 1999
    [25] 中华人民共和国住房和城乡建设部. 建筑地基基础设计规范:GB 50007-2011[S]. 北京:中国建筑工业出版社, 2011
    [26] O’BRIEN P L, DESUTTER, T M, CASEY F X M, et al.Thermal remediation alters soil properties:A review[J].Journal of Environmental Management, 2018, 206: 826-835 10.1016/j.jenvman.2017.11.052
    [27] 陈国兴, 樊良本, 陈甦. 土质学与土力学[M]. 2版. 北京:中国水利水电出版社, 知识产权出版社, 2006
    [28] 汪小庆. 浅谈如何提高混凝土的耐硫酸盐腐蚀性[J]. 铁道工程学报, 2008, 25(7):83-85
    [29] 张光辉. 混凝土结构硫酸盐腐蚀研究综述[J]. 混凝土, 2012(1):49-54
    [30] 中华人民共和国建设部. 岩土工程勘察规范:GB 50021-2001[S]. 北京:中国建筑工业出版社, 2009
  • 加载中
计量
  • 文章访问数:  2170
  • HTML全文浏览数:  2021
  • PDF下载数:  190
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-10-11

PAHs污染土壤的热修复可行性

  • 1. 中国科学院南京土壤研究所,南京 210008
  • 2. 北京高能时代环境技术股份有限公司,北京 100095
  • 3. 中国科学院大学,北京 100049
  • 4. 南京康地环保科技有限公司,南京 210008
基金项目:

中国科学院重点部署项目(KFZD-SW-303)

中国科学院科技服务网络计划(STS计划)项目(KFJ-STS-ZDTP-039)

摘要: 以某煤制气厂污染场地中16种US EPA优先控制多环芳烃(Σ16 PAHs)为目标污染物进行了热修复批量实验和可行性实验。热修复批量实验结果表明,当热修复温度为400 ℃、加热时间为8 h时,土壤中的Σ16 PAHs去除率达99.9%。热修复可行性实验选择重污染、中污染和轻污染土壤以400 ℃作为目标温度,恒温72 h进行实验。热修复前后不同程度污染土壤的Σ16 PAHs的总去除率均可达到99.9%,但重污染土壤浓度非常高,部分苯并类物质未达到修复目标值,需进一步延长加热时间或提高加热温度保证达到修复目标值。土壤土工参数影响分析结果表明,热修复后土壤颗粒粒径呈增大趋势,土壤稳定性、抗压强度均增强。此外,土壤中可溶性盐含量增多,盐渍化程度增大。

English Abstract

参考文献 (30)

目录

/

返回文章
返回