全文HTML
1 材料与方法
1.1 催化剂制备
1.2 催化剂表征
1.2.1 X射线衍射分析
1.2.2 比表面积-孔结构分析
1.2.3 程序升温氮脱附
1.3 催化剂评价方法
Fig. 1 Diagram of experimental set-up

2 结果与讨论
2.1 不同双组分金属氧化物催化剂活性
Fig. 2 Activity of catalytic ozonation of NO over catalysts doped with different two-component metal oxides
Fig. 2 Activity of catalytic ozonation of NO over catalysts doped with different two-component metal oxides

Table 1 BET results of catalysts doped with different two-component metal oxides
催化剂 | 比表面积/(m2·g−1) | 孔径/nm | 孔容/(cm3·g−1) |
3.0% MnOx/γ-Al2O3 | 247.91 | 7.96 | 0.49 |
3% MnOx-CeOx(0.4)/γ-Al2O3 | 236.71 | 7.97 | 0.47 |
3% MnOx-CoOx(0.4)/γ-Al2O3 | 233.02 | 8.41 | 0.49 |
3% MnOx-CuOx(0.4)/γ-Al2O3 | 242.37 | 8.03 | 0.47 |
3% MnOx-NiOx(0.4)/γ-Al2O3 | 231.73 | 8.42 | 0.49 |
3% MnOx-FeOx(0.4)/γ-Al2O3 | 232.45 | 8.41 | 0.49 |
Fig. 3 NH3-TPD profiles of catalysts doped with different two-component metal oxides
Fig. 3 NH3-TPD profiles of catalysts doped with different two-component metal oxides

Table 2 Peak areas of catalysts doped with different two-component metal oxides
催化剂 | 峰面积 |
Mn/Ni | 5 475 |
Mn/Ce | 6 826 |
Mn/Fe | 5 386 |
Mn/Cu | 5 436 |
Mn/Co | 6 226 |
Mn | 5 655 |
2.2 不同负载比例双组分金属氧化物催化剂活性
Fig. 4 Activity of NO catalytic ozonation over catalysts doped with different Mn/Ce molar ratio
Fig. 4 Activity of NO catalytic ozonation over catalysts doped with different Mn/Ce molar ratio

Table 3 BET results of catalysts doped with different Mn/Ce molar ratio
催化剂 | 比表面积/(m2·g−1) | 孔径/nm | 孔容/(cm3·g−1) |
3% MnOx-CeOx(0.2)/γ-Al2O3 | 242.44 | 8.34 | 5.05 |
3% MnOx-CeOx(0.4)/γ-Al2O3 | 236.71 | 7.97 | 4.72 |
3% MnOx-CeOx(0.6)/γ-Al2O3 | 228.96 | 8.45 | 4.84 |
3% MnOx-CeOx(0.8)/γ-Al2O3 | 215.48 | 8.15 | 4.39 |
3% MnOx-CeOx(1.0)/γ-Al2O3 | 209.12 | 8.27 | 4.32 |
Fig. 5 XRD patterns of catalysts doped with different Mn/Ce molar ratio

2.3 煅烧温度对催化剂活性的影响
Fig. 6 Activity of NO catalytic ozonation over catalysts under different calcination temperature
Fig. 6 Activity of NO catalytic ozonation over catalysts under different calcination temperature

Table 4 BET result of catalysts under different calcination temperature
催化剂 | 比表面积/(m2·g−1) | 孔径/nm | 孔容/(cm3·g−1) |
3% MnOx-CeOx(0.4)/γ-Al2O3(400 ℃) | 242.44 | 8.34 | 5.05 |
3% MnOx-CeOx(0.4)/γ-Al2O3(450 ℃) | 236.71 | 7.97 | 4.72 |
3% MnOx-CeOx(0.4)/γ-Al2O3(500 ℃) | 228.96 | 8.45 | 4.84 |
3% MnOx-CeOx(0.4)/γ-Al2O3(550 ℃) | 215.48 | 8.15 | 4.39 |
3% MnOx-CeOx(0.4)/γ-Al2O3(600 ℃) | 209.12 | 8.27 | 4.32 |
Fig. 7 XRD patterns of catalysts under different calcination temperature

Fig. 8 NH3-TPD profiles of catalysts under different calcination temperature

Table 5 Peak area of catalysts under different calcination temperature
催化剂煅烧温度/℃ | 峰面积 |
400 | 5 725 |
450 | 6 635 |
500 | 6 826 |
550 | 6 403 |
600 | 6 068 |
2.4 催化剂稳定性实验
Fig. 9 Stability of catalyst in different simulated flue gas

2.5 催化剂活性恢复实验
Fig. 10 Reactivation of catalyst
