镧铝/壳聚糖复合小球对水中磷的吸附及机理

王乐阳, 许骐, 周琴, 张美一, 赵远. 镧铝/壳聚糖复合小球对水中磷的吸附及机理[J]. 环境工程学报, 2018, 12(9): 2490-2501. doi: 10.12030/j.cjee.201803229
引用本文: 王乐阳, 许骐, 周琴, 张美一, 赵远. 镧铝/壳聚糖复合小球对水中磷的吸附及机理[J]. 环境工程学报, 2018, 12(9): 2490-2501. doi: 10.12030/j.cjee.201803229
WANG Leyang, XU Qi, ZHOU Qin, Zhang Meiyi, ZHAO Yuan. Adsorption and mechanism of phosphorus in water by lanthanum-aluminum/chitosan composite pellets[J]. Chinese Journal of Environmental Engineering, 2018, 12(9): 2490-2501. doi: 10.12030/j.cjee.201803229
Citation: WANG Leyang, XU Qi, ZHOU Qin, Zhang Meiyi, ZHAO Yuan. Adsorption and mechanism of phosphorus in water by lanthanum-aluminum/chitosan composite pellets[J]. Chinese Journal of Environmental Engineering, 2018, 12(9): 2490-2501. doi: 10.12030/j.cjee.201803229

镧铝/壳聚糖复合小球对水中磷的吸附及机理

  • 基金项目:

    国家自然科学基金资助项目(41573114)

    常州市科技支撑计划(社会发展)项目(CE20175060)

    江苏省重点研发专项资金(社会发展)项目(BE2015670)

    国家科技支撑计划课题(2015BAC02B02-01)

Adsorption and mechanism of phosphorus in water by lanthanum-aluminum/chitosan composite pellets

  • Fund Project:
  • 摘要: 镧铝复合材料对水体中磷有着优良的吸附性能,但其粉末状特性大大限制了其应用前景。利用壳聚糖的可塑性,制备出镧铝/壳聚糖复合小球,并利用环氧氯丙烷和聚乙烯醇提高复合材料的耐酸性,同时研究其对水体中磷的静态批吸附及动态柱吸附行为,最后采用SEM、EDS、XRD和FTIR表征方法观察吸附磷前后的微观结构,阐述吸附机理。结果表明:镧铝/壳聚糖复合小球对磷的最大吸附量达到39.84 mg·g-1;壳聚糖/镧铝质量比为1/10时,复合小球穿透吸附效率随流速提高而下降,BDST模型能够有效地模拟该复合小球对磷的动态吸附过程;壳聚糖/镧铝质量比为1/4的聚乙烯醇改性复合小球较质量比为1/5的更加耐受水流冲击,吸附效果较为稳定;静电作用,离子交换作用,络合作用和La化合物产生的氧空位是镧铝/壳聚糖复合小球吸磷的主要机理。
  • 加载中
  • [1] 仉春华, 王文君, 安晓雯, 等. 质子化壳聚糖的除磷性能 [J]. 环境工程学报,2013,7(2):568-572
    [2] OEHMEN A, LEMOS P C, CARVALHO G, et al.Advances in enhanced biological phosphorus removal: From micro to macro scale [J].Water Research,2007,41(11):2271-2300 10.1016/j.watres.2007.02.030
    [3] MAHANINIA M H, WILSON L D.Phosphate uptake studies of cross-linked chitosan bead materials [J].Journal of Colloid and Interface Science,2017,485:201-212 10.1016/j.jcis.2016.09.031
    [4] HAGHSERESHT F, WANG S, DO D D.A novel lanthanum-modified bentonite, phoslock, for phosphate removal from wastewaters [J].Applied Clay Science,2009,46(4):369-375 10.1016/j.clay.2009.09.009
    [5] YAN L G, XU Y Y, YU H Q, et al.Adsorption of phosphate from aqueous solution by hydroxy-aluminum, hydroxy-iron and hydroxy-iron-aluminum pillared bentonites [J].Journal of Hazardous Materials,2010,179(1/2/3):244-250 10.1016/j.jhazmat.2010.02.086
    [6] KUMAR P, SUDHA S, CHAND S, et al.Phosphate removal from aqueous solution using coir-pith activated carbon [J].Separation Science and Technology,2010,45(10):1463-1470 10.1080/01496395.2010.485604
    [7] JANOS P, KOPECKA A, HEJDA S.Utilization of waste humate product (iron humate) for the phosphorus removal from waters [J].Desalination,2011,265(1/2/3):88-92 10.1016/j.desal.2010.07.036
    [8] YANG B, LIU D, LU J, et al.Phosphate uptake behavior and mechanism analysis of facilely synthesized nanocrystalline Zn-Fe layered double hydroxide with chloride intercalation [J].Surface and Interface Analysis,2018,50(3):378-392 10.1002/sia.6391
    [9] 唐朝春, 刘名, 陈惠民, 等. 吸附除磷技术的研究进展 [J]. 水处理技术,2014,40(9):1-7
    [10] XU R, ZHANG M Y, MORTIMER RJ G, et al.Enhanced phosphorus locking by novel lanthanum/aluminum-hydroxide composite: Implications for eutrophication control [J].Environmental Science & Technology,2017,51(6):3418-3425 10.1021/acs.est.6b05623
    [11] SANKAR M U, AIGAL S, MALIYEKKAL S M, et al.Biopolymer-reinforced synthetic granular nanocomposites for affordable point-of-use water purification [J].Proceedings of the National Academy of Sciences of the United States of America,2013,110(21):8459-8464 10.1073/pnas.1220222110
    [12] SARGIN I, KAYA M, ARSLAN G, et al.Preparation and characterisation of biodegradable pollen-chitosan microcapsules and its application in heavy metal removal [J].Bioresource Technology,2015,177:1-7 10.1016/j.biortech.2014.11.067
    [13] AN B, JUNG KY, LEE SH, et al.Effective phosphate removal from synthesized wastewater using copper-chitosan bead: Batch and fixed-bed column studies [J].Water, Air & Soil Pollution,2014,225(8):1-12 10.1007/s11270-014-2050-6
    [14] HU J, SHANG R, HEIJMAN B, et al.Influence of activated carbon preloading by EfOM fractions from treated wastewater on adsorption of pharmaceutically active compounds [J].Chemosphere,2016,150:49-56 10.1016/j.chemosphere.2016.01.121
    [15] CAO S, JING Z, ZHANG X.Study on phosphorus adsorption dynamics of fly ash filtering material [J].Applied Mechanics & Materials,2010,33:259-262 10.4028/www.scientific.net/AMM.33.259
    [16] LONG F, GONG J L, ZENG G M, et al.Removal of phosphate from aqueous solution by magnetic Fe-Zr binary oxide [J].Chemical Engineering Journal,2011,171(2):448-455 10.1016/j.cej.2011.03.102
    [17] 张修稳, 李锋民, 卢伦, 等. 10种人工湿地填料对磷的吸附特性比较 [J]. 水处理技术,2014,40(3):49-52
    [18] 韩强, 杜晓丽, 崔申申, 等. 颗粒态铁锰复合氧化物对磷的吸附特征及影响因素 [J]. 化工进展,2017,36(6):2311-2317
    [19] 胡超, 王有宁, 郑足红, 等. 蒙脱石-壳聚糖复合物对磷吸附性能的研究 [J]. 农业环境科学学报,2017,36(10):2086-2091
    [20] 邢坤, 王海增. 改性与成型层状氢氧化镁铝对不同水体中PO43-的脱除性能 [J]. 环境科学,2013,34(4):1611-1616
    [21] NAMASIVAYAM C, PRATHAP K.Recycling Fe(III)/Cr(III) hydroxide, an industrial solid waste for the removal of phosphate from water [J].Journal of Hazardous Materials,2005,123(1/2/3):127-134 10.1016/j.jhazmat.2005.03.037
    [22] 胡静, 董仁杰, 吴树彪, 等. 脱水铝污泥对水溶液中磷的吸附作用研究 [J]. 水处理技术,2010,36(5):42-45
    [23] 贾小宁, 王耀龙, 周林成, 等. 改性沸石对低浓度氨氮废水的动态吸附 [J]. 环境工程学报,2013,7(2):557-562
    [24] 徐颖, 叶志隆, 叶欣, 等. 给水污泥对水中磷的吸附性能 [J]. 环境工程学报,2018,12(3):712-719 10.12030/j.cjee.201708032
    [25] RAO K S, ANAND S, VENKATESWARLU P.Modeling the kinetics of Cd(II) adsorption on Syzygium cumini L leaf powder in a fixed bed mini column [J].Journal of Industrial and Engineering Chemistry,2011,17(2):174-181 10.1016/j.jiec.2011.02.003
    [26] HAN R, DING D, XU Y, et al.Use of rice husk for the adsorption of congo red from aqueous solution in column mode [J].Bioresource Technology,2008,99(8):2938-2946 10.1016/j.biortech.2007.06.027
    [27] QAISER S, SALEEMI A R, UMAR M.Biosorption of lead from aqueous solution by ficus religiosa leaves: Batch and column study [J].Journal of Hazardous Materials,2009,166(2/3):998-1005 10.1016/j.jhazmat.2008.12.003
    [28] IRANI M, ISMAIL H, AHMAD Z.Preparation and properties of linear low-density polyethylene-g-poly (acrylic acid)/organo-montmorillonite superabsorbent hydrogel composites [J].Polymer Testing,2013,32(3):502-512 10.1016/j.polymertesting.2013.01.001
    [29] IRANI M, ISMAIL H, AHMAD Z, et al.Synthesis of linear low-density polyethylene-g-poly (acrylic acid)-co-starch/organo-montmorillonite hydrogel composite as an adsorbent for removal of Pb(II) from aqueous solutions [J].Journal of Environmental Sciences,2015,27(1):9-20 10.1016/j.jes.2014.05.049
    [30] XU Y X, KIM K M, HANNA M A, et al.Chitosan-starch composite film: Preparation and characterization [J].Industrial Crops and Products,2005,21(2):185-192 10.1016/j.indcrop.2004.03.002
    [31] HUO H, LIN H, DONG Y, et al.Ammonia-nitrogen and phosphates sorption from simulated reclaimed waters by modified clinoptilolite [J].Journal of Hazardous Materials,2012,229-230(5):292-297 10.1016/j.jhazmat.2012.06.001
    [32] GUNISTER E, PESTRELI D, UNLU C H, et al.Synthesis and characterization of chitosan-MMT biocomposite systems [J].Carbohydrate Polymers,2007,67(3):358-365 10.1016/j.carbpol.2006.06.004
    [33] SILVA P M O, FRANCISCO J E, CAJE J C M, et al.A batch and fixed bed column study for fluorescein removal using chitosan modified by epichlorohydrin [J].Journal of Environmental Science and Health,2018,53(1):55-64 10.1080/10934529.2017
  • 加载中
计量
  • 文章访问数:  2815
  • HTML全文浏览数:  2638
  • PDF下载数:  163
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-09-20
王乐阳, 许骐, 周琴, 张美一, 赵远. 镧铝/壳聚糖复合小球对水中磷的吸附及机理[J]. 环境工程学报, 2018, 12(9): 2490-2501. doi: 10.12030/j.cjee.201803229
引用本文: 王乐阳, 许骐, 周琴, 张美一, 赵远. 镧铝/壳聚糖复合小球对水中磷的吸附及机理[J]. 环境工程学报, 2018, 12(9): 2490-2501. doi: 10.12030/j.cjee.201803229
WANG Leyang, XU Qi, ZHOU Qin, Zhang Meiyi, ZHAO Yuan. Adsorption and mechanism of phosphorus in water by lanthanum-aluminum/chitosan composite pellets[J]. Chinese Journal of Environmental Engineering, 2018, 12(9): 2490-2501. doi: 10.12030/j.cjee.201803229
Citation: WANG Leyang, XU Qi, ZHOU Qin, Zhang Meiyi, ZHAO Yuan. Adsorption and mechanism of phosphorus in water by lanthanum-aluminum/chitosan composite pellets[J]. Chinese Journal of Environmental Engineering, 2018, 12(9): 2490-2501. doi: 10.12030/j.cjee.201803229

镧铝/壳聚糖复合小球对水中磷的吸附及机理

  • 1. 常州大学环境与安全工程学院,常州 213164;中国科学院生态环境研究中心,环境纳米技术与健康效应重点实验室,北京100085
基金项目:

国家自然科学基金资助项目(41573114)

常州市科技支撑计划(社会发展)项目(CE20175060)

江苏省重点研发专项资金(社会发展)项目(BE2015670)

国家科技支撑计划课题(2015BAC02B02-01)

摘要: 镧铝复合材料对水体中磷有着优良的吸附性能,但其粉末状特性大大限制了其应用前景。利用壳聚糖的可塑性,制备出镧铝/壳聚糖复合小球,并利用环氧氯丙烷和聚乙烯醇提高复合材料的耐酸性,同时研究其对水体中磷的静态批吸附及动态柱吸附行为,最后采用SEM、EDS、XRD和FTIR表征方法观察吸附磷前后的微观结构,阐述吸附机理。结果表明:镧铝/壳聚糖复合小球对磷的最大吸附量达到39.84 mg·g-1;壳聚糖/镧铝质量比为1/10时,复合小球穿透吸附效率随流速提高而下降,BDST模型能够有效地模拟该复合小球对磷的动态吸附过程;壳聚糖/镧铝质量比为1/4的聚乙烯醇改性复合小球较质量比为1/5的更加耐受水流冲击,吸附效果较为稳定;静电作用,离子交换作用,络合作用和La化合物产生的氧空位是镧铝/壳聚糖复合小球吸磷的主要机理。

English Abstract

参考文献 (33)

返回顶部

目录

/

返回文章
返回