改性废弃皮革对U(VI)的动态吸附

邓国鸿, 罗学刚, 杨嘉怡, 何雨. 改性废弃皮革对U(VI)的动态吸附[J]. 环境工程学报, 2018, 12(9): 2602-2608. doi: 10.12030/j.cjee.201803124
引用本文: 邓国鸿, 罗学刚, 杨嘉怡, 何雨. 改性废弃皮革对U(VI)的动态吸附[J]. 环境工程学报, 2018, 12(9): 2602-2608. doi: 10.12030/j.cjee.201803124
DENG Guohong, LUO Xuegang, YANG Jiayi, HE Yu. Dynamic adsorption of U(VI) by modified leather waste[J]. Chinese Journal of Environmental Engineering, 2018, 12(9): 2602-2608. doi: 10.12030/j.cjee.201803124
Citation: DENG Guohong, LUO Xuegang, YANG Jiayi, HE Yu. Dynamic adsorption of U(VI) by modified leather waste[J]. Chinese Journal of Environmental Engineering, 2018, 12(9): 2602-2608. doi: 10.12030/j.cjee.201803124

改性废弃皮革对U(VI)的动态吸附

  • 基金项目:

    国家国防基础科研计划项目(16zg6101)

Dynamic adsorption of U(VI) by modified leather waste

  • Fund Project:
  • 摘要: 以改性废弃皮革为吸附剂对U(VI)进行动态吸附实验,采用直径3 cm、高50 cm的玻璃吸附柱,在填料高度为3、4和5 cm,U(VI)溶液进水流速为0.85、1.7和2.55 mL·min-1,初始U(VI)浓度为6、12和18 mg·L-1的条件下,考察了各因素对U(VI)吸附穿透曲线的影响。动态实验表明:柱高的降低、流速的增大和U(VI)浓度的增加均会使穿透时间提前;动态吸附穿透曲线能很好地符合Thomas模型的条件(R2>0.95),同时吸附量的预测值与实际测试值较为接近。使用穿透时间(ta)与填料高度(h)的关系式ta=220h-433(R2=0.998),在仅改变流速和初始U(VI)浓度时,穿透时间预测值与实际测试值相差较小,表明BDST模型能确定固定床的动态吸附周期。
  • 加载中
  • [1] 韩琪胜, 马儒超, 周志伟,等. 吸附水体中铀的研究进展[J]. 江西化工,2014(1):72-76
    [2] 郑绵平. 青藏高原盐湖资源研究的新进展[J]. 地球学报,2001,22(2):97-102
    [3] 张利珍, 谭秀民, 张秀峰. 我国盐湖资源开发利用的现状及对策分析[J]. 盐业与化工,2012,41(11):7-10
    [4] KOSTAKI V T, FLOROU A B, PRODROMIDIS M I.Electrochemically induced chemical sensor properties in graphite screen-printed electrodes: The case of a chemical sensor for uranium [J].Electrochimica Acta,2011,56(24):8857-8860 10.1016/j.electacta.2011.07.092
    [5] REARDON E J, WANG Y.A.Limestone reactor for fluoride removal from wastewaters [J].Environmental Science & Technology,2000,34(15):3247-3253 10.1021/es990542k
    [6] RAJESHKUMAR J, JOON-SOON K, JIN-YOUNG L, et al.A brief review on solvent extraction of uranium from acidic solutions [J].Separation & Purification Reviews,2011,40(2):77-125 10.1080/15422119.2010.549760
    [7] FAN F, BAI J, FAN F, et al.Solvent extraction of uranium from aqueous solutions by α-benzoinoxime [J].Journal of Radioanalytical & Nuclear Chemistry,2014,300(3):1-5 10.1007/s10967-014-3002-8
    [8] BELTRAMI D, COTE G, MOKHTARI H, et al.Recovery of uranium from wet phosphoric acid by solvent extraction processes [J].Chemical Reviews,2014,114(24):12002-23 10.1021/cr5001546
    [9] STUCKER V, RANVILLE J, NEWMAN M, et al.Evaluation and application of anion exchange resins to measure groundwater uranium flux at a former uranium mill site [J].Water Research,2011,45(16):4866-4876 10.1016/j.watres.2011.06.030
    [10] KUTAHYALI C, ERAL M.Sorption studies of uranium and thorium on activated carbon prepared from olive stones: Kinetic and thermodynamic aspects [J].Journal of Nuclear Materials,2010,396(2/3):251-256 10.1016/j.jnucmat.2009.11.018
    [11] KIM J W, SOHN M H, KIM D S, et al.Production of granular activated carbon from waste walnut shell and its adsorption characteristics for Cu2+ ion [J].Journal of Hazardous Materials,2001,85(3):301-315 10.1016/S0304-3894(01)00239-4
    [12] 曾雪, 罗学刚, 周建. 负载Zr(Ⅳ)的水解废弃皮革对氟离子的吸附性能[J]. 化工学报,2016,67(4):1368-1377
    [13] 陈春燕, 范浩军, 冯萍. 制革固体废弃物的综合利用技术及其新进展[J]. 皮革科学与工程,2008,18(5):27-33
    [14] 邓再芳,罗学刚,林晓艳. 稻壳吸附柱处理Cu2+废水的动态试验[J]. 林产化学与业,2010,30(4):69-72
    [15] HASAN S H, RANJAN D, TALAT M.Agro-industrial waste “wheat bran” for the biosorptive remediation of selenium through continuous up-flow fixed-bed column [J].Journal of Hazardous Materials,2010,181(1/2/3):1134-1142 10.1016/j.jhazmat.2010.05.133
    [16] THOMAS H C.Heterogeneous ion exchange in a flowing system [J].Journal of the American Chemical Society,1944,66(10):1664-1666 10.1021/ja01238a017
    [17] 孔郑磊, 李晓晨, 杨继利,等. 改性荔枝皮对水中Pb(Ⅱ)的动态吸附特性[J]. 环境科学研究,2014,27(10):1186-1192
    [18] MANOS M J, KANATZIDIS M G.Layered metal sulfides capture uranium from seawater [J].Journal of the American Chemical Society,2012,134(39):16441-16446 10.1021/ja308028n
    [19] OGUZ E, ERSOY M.Removal of Cu2+ from aqueous solution by adsorption in a fixed bed column and neural network modelling [J].Chemical Engineering Journal,2010,164(1):56-62 10.1016/j.cej.2010.08.016
    [20] VINODHINI V, DAS N.Packed bed column studies on Cr (VI) removal from tannery wastewater by neem sawdust [J].Desalination,2010,264(1):9-14 10.1016/j.desal.2010.06.073
    [21] ZOU W, ZHAO L, ZHU L.Adsorption of uranium(VI) by grapefruit peel in a fixed-bed column: Experiments and prediction of breakthrough curves [J].Journal of Radioanalytical & Nuclear Chemistry,2013,295(1):717-727 10.1007/s10967-012-1950-4
    [22] NGUYEN L H, VU T M, LE T T, et al.Ammonium removal from aqueous solutions by fixed-bed column using corncob-based modified biochar [J].Environmental Technology,2017,204(3):1-10 10.1080/09593330.2017.1404134
    [23] VIJAYARAGHAVAN K, JEGAN J, PALANIVELU K, et al.Batch and column removal of copper from aqueous solution using a brown marine alga turbinaria ornata [J].Chemical Engineering Journal,2005,106(2):177-184 10.1016/j.cej.2004.12.039
  • 加载中
计量
  • 文章访问数:  1429
  • HTML全文浏览数:  1288
  • PDF下载数:  136
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-09-20

改性废弃皮革对U(VI)的动态吸附

  • 1. 西南科技大学生命科学与工程学院, 绵阳 621010
  • 2. 西南科技大学生物质材料教育部工程研究中心, 绵阳 621010
基金项目:

国家国防基础科研计划项目(16zg6101)

摘要: 以改性废弃皮革为吸附剂对U(VI)进行动态吸附实验,采用直径3 cm、高50 cm的玻璃吸附柱,在填料高度为3、4和5 cm,U(VI)溶液进水流速为0.85、1.7和2.55 mL·min-1,初始U(VI)浓度为6、12和18 mg·L-1的条件下,考察了各因素对U(VI)吸附穿透曲线的影响。动态实验表明:柱高的降低、流速的增大和U(VI)浓度的增加均会使穿透时间提前;动态吸附穿透曲线能很好地符合Thomas模型的条件(R2>0.95),同时吸附量的预测值与实际测试值较为接近。使用穿透时间(ta)与填料高度(h)的关系式ta=220h-433(R2=0.998),在仅改变流速和初始U(VI)浓度时,穿透时间预测值与实际测试值相差较小,表明BDST模型能确定固定床的动态吸附周期。

English Abstract

参考文献 (23)

目录

/

返回文章
返回