介质阻挡放电等离子体降解高浓度甲苯

王保伟, 姚淑美, 彭叶平, 押玉荣, 王晓磊, 安少锋. 介质阻挡放电等离子体降解高浓度甲苯[J]. 环境工程学报, 2018, 12(7): 1977-1985. doi: 10.12030/j.cjee.201801156
引用本文: 王保伟, 姚淑美, 彭叶平, 押玉荣, 王晓磊, 安少锋. 介质阻挡放电等离子体降解高浓度甲苯[J]. 环境工程学报, 2018, 12(7): 1977-1985. doi: 10.12030/j.cjee.201801156
WANG Baowei, YAO Shumei, PENG Yeping, YA Yurong, WANG Xiaolei, AN Shaofeng. Degradation of high concentration toluene with dielectric barrier discharge plasma[J]. Chinese Journal of Environmental Engineering, 2018, 12(7): 1977-1985. doi: 10.12030/j.cjee.201801156
Citation: WANG Baowei, YAO Shumei, PENG Yeping, YA Yurong, WANG Xiaolei, AN Shaofeng. Degradation of high concentration toluene with dielectric barrier discharge plasma[J]. Chinese Journal of Environmental Engineering, 2018, 12(7): 1977-1985. doi: 10.12030/j.cjee.201801156

介质阻挡放电等离子体降解高浓度甲苯

  • 基金项目:

    国家重点研发计划项目(2016YFB0600701)

    石家庄市重大科技专项(176240857A)

Degradation of high concentration toluene with dielectric barrier discharge plasma

  • Fund Project:
  • 摘要: 为解决喷漆和涂装废气中VOCs的污染,采用同轴圆管式介质阻挡反应器进行低温等离子体降解高浓度甲苯探索,研究了反应器参数(放电间距、放电长度)、操作参数(初始甲苯浓度、气体流量、输入功率)等关键参数对甲苯转化率和产物CO2选择性的影响。结果表明:放电间距过大或者过小都不利于甲苯的降解,放电长度的增加对其影响相对较小;输入功率越大,甲苯的降解效果越好,并且反应产物中臭氧的浓度越低,但气体流量及初始甲苯浓度的增加不利于甲苯的降解。最后对产物进行GC-MS检测,分析了甲苯降解机理。
  • 加载中
  • [1] GHARIB-ABOUGHAIDA S, ASSADI A A, COSTA G, et al.Association of surface dielectric barrier discharge and photocatalysis in continuous reactor at pilot scale: Butyraldehyde oxidation, by-products identification and ozone valorization[J].Chemical Engineering Journal,2016,292:276-283 10.1016/j.cej.2016.02.029
    [2] ZHANG Z Q, WANG S B, WANG R G, et al.Phosphoproteome analysis reveals the molecular mechanisms underlying deoxynivalenol-induced intestinal toxicity in IPEC-J2 cells[J].Toxins,2016,8(10):270 10.3390/toxins8100270
    [3] HSIEH L T, HSIEH L T, YANG H H, et al.Levels and composition of volatile organic compounds from the electric oven during roasting pork activities[J].Sustainable Environment Research,2012,22(1):17-24
    [4] VAN DURME J, DEWULF J, SYSMANS W, et al.Abatement and degradation pathways of toluene in indoor air by positive corona discharge[J].Chemosphere,2007,68(10):1821-1829 10.1016/j.chemosphere.2007.03.053
    [5] VANDENBROUCKE A M, MORA M, JIM NEZ-SANCHIDRI N C, et al.TCE abatement with a plasma-catalytic combined system using MnO2 as catalyst[J].Applied Catalysis B: Environmental,2014,156-157(Supplement C):94-100 10.1016/j.apcatb.2014.03.007
    [6] XU N, FU W N, HE C, et al.Benzene removal using non-thermal plasma with CuO/AC catalyst: Reaction condition optimization and decomposition mechanism[J].Plasma Chemistry and Plasma Processing,2014,34(6):1387-1402 10.1007/s11090-014-9580-y
    [7] LIANG W J, MA L, LIU H, et al.Toluene degradation by non-thermal plasma combined with a ferroelectric catalyst[J].Chemosphere,2013,92(10):1390-1395 10.1016/j.chemosphere.2013.05.042
    [8] WANG B W, CHI C M, XU M, et al.Plasma-catalytic removal of toluene over CeO2-MnOx catalysts in an atmosphere dielectric barrier discharge[J].Chemical Engineering Journal,2017,322:679-692 10.1016/j.cej.2017.03.153
    [9] DEMIDIOUK V, MOON S I, CHAE J O.Toluene and butyl acetate removal from air by plasma-catalytic system[J].Catalysis Communications,2003,4(2):51-56 10.1016/S1566-7367(02)00256-X
    [10] CHANG C L, LIN T S.Decomposition of toluene and acetone in packed dielectric barrier discharge reactors[J].Plasma Chemistry and Plasma Processing,2005,25(3):227-243 10.1007/s11090-004-3034-x
    [11] LIANG W J, LI J, LI J X, et al.Formaldehyde removal from gas streams by means of NaNO2 dielectric barrier discharge plasma[J].Journal of Hazardous Materials,2010,175(1):1090-1095 10.1016/j.jhazmat.2009.10.034
    [12] GUO Y F, YE D Q, TIAN Y F, ET AL.Humidity effect on toluene decomposition in a wire-plate dielectric barrier discharge reactor[J].Plasma Chemistry and Plasma Processing,2006,26(3):237-249 10.1007/s11090-006-9008-4
    [13] YE Z L, ZHANG Y N, LI P, et al.Feasibility of destruction of gaseous benzene with dielectric barrier discharge[J].Journal of Hazardous Materials,2008,156(1):356-364 10.1016/j.jhazmat.2007.12.048
    [14] WANG H C, LI D, WU Y, et al.Removal of four kinds of volatile organic compounds mixture in air using silent discharge reactor driven by bipolar pulsed power[J].Journal of Electrostatics,2009,67(4):547-553 10.1016/j.elstat.2008.11.004
    [15] XU X X, WANG P T, XU W C, et al.Plasma-catalysis of metal loaded SBA-15 for toluene removal: Comparison of continuously introduced and adsorption-discharge plasma system[J].Chemical Engineering Journal,2016,283:276-284 10.1016/j.cej.2015.07.050
    [16] FUTAMURA S, ZHANG A, EINAGA H, et al.Involvement of catalyst materials in nonthermal plasma chemical processing of hazardous air pollutants[J].Catalysis Today,2002,72(3):259-265 10.1016/S0920-5861(01)00503-X
    [17] BARAKAT C, GRAVEJAT P, GUAITELLA O, et al.Oxidation of isopropanol and acetone adsorbed on TiO2 under plasma generated ozone flow: Gas phase and adsorbed species monitoring[J].Applied Catalysis B: Environmental,2014,147:302-313 10.1016/j.apcatb.2013.09.008
    [18] WU J L, HUANG Y X, XIA Q B, et al.Decomposition of toluene in a plasma catalysis system with NiO, MnO2, CeO2, Fe2O3, and CuO catalysts[J].Plasma Chemistry and Plasma Processing,2013,33(6):1073-1082 10.1007/s11090-013-9485-1
    [19] THEVENET F, SIVACHANDIRAN L, GUAITELLA O, et al.Plasma-catalyst coupling for volatile organic compound removal and indoor air treatment: A review[J].Journal of Physics D: Applied Physics,2014,47:224011 10.1088/0022-3727/47/22/224011
    [20] CHEN H L, LEE H M, CHEN S H, et al.Review of plasma catalysis on hydrocarbon reforming for hydrogen production-interaction, integration, and prospects[J].Applied Catalysis B: Environmental,2008,85(1):1-9 10.1016/j.apcatb.2008.06.021
    [21] HARLING A M, GLOVER D J, WHITEHEAD J C, et al.The role of ozone in the plasma-catalytic destruction of environmental pollutants[J].Applied Catalysis B: Environmental,2009,90(1/2):157-161 10.1016/j.apcatb.2009.03.005
    [22] HUANG R, LU M, WANG P, et al.Enhancement of the non-thermal plasma-catalytic system with different zeolites for toluene removal[J].RSC Advances,2015,5(88):72113-72120 10.1039/c5ra13604k
    [23] KOHNO H, BEREZIN A A, JEN-SHIH C, et al.Destruction of volatile organic compounds used in a semiconductor industry by a capillary tube discharge reactor[J].IEEE Transactions on Industry Applications,1998,34(5):953-966 10.1109/28.720435
    [24] HUANG H, YE D, LEUNG D Y C, et al.Byproducts and pathways of toluene destruction via plasma-catalysis[J].Journal of Molecular Catalysis A: Chemical,2011,336(1/2):87-93 10.1016/j.molcata.2011.01.002
    [25] ZHU T, WAN Y D, LI J, et al.Volatile organic compounds decomposition using non-thermal plasma coupled with a combination of catalysts[J].International Journal of Environmental Science and Technology,2011,8(3):621-630 10.1007/BF03326247
  • 加载中
计量
  • 文章访问数:  3358
  • HTML全文浏览数:  3005
  • PDF下载数:  294
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-07-26

介质阻挡放电等离子体降解高浓度甲苯

  • 1. 天津大学化工学院绿色合成与转化教育部重点实验室,天津 300072
  • 2. 嘉诚环保工程有限公司,河北省污水治理与资源化工程技术研究中心,石家庄 050000
基金项目:

国家重点研发计划项目(2016YFB0600701)

石家庄市重大科技专项(176240857A)

摘要: 为解决喷漆和涂装废气中VOCs的污染,采用同轴圆管式介质阻挡反应器进行低温等离子体降解高浓度甲苯探索,研究了反应器参数(放电间距、放电长度)、操作参数(初始甲苯浓度、气体流量、输入功率)等关键参数对甲苯转化率和产物CO2选择性的影响。结果表明:放电间距过大或者过小都不利于甲苯的降解,放电长度的增加对其影响相对较小;输入功率越大,甲苯的降解效果越好,并且反应产物中臭氧的浓度越低,但气体流量及初始甲苯浓度的增加不利于甲苯的降解。最后对产物进行GC-MS检测,分析了甲苯降解机理。

English Abstract

参考文献 (25)

目录

/

返回文章
返回