盐酸羟胺和酒石酸强化Fe2+/Na2S2O8体系降解双酚A

顾雍, 孙贤波, 刘勇弟. 盐酸羟胺和酒石酸强化Fe2+/Na2S2O8体系降解双酚A[J]. 环境工程学报, 2018, 12(10): 2732-2740. doi: 10.12030/j.cjee.201801075
引用本文: 顾雍, 孙贤波, 刘勇弟. 盐酸羟胺和酒石酸强化Fe2+/Na2S2O8体系降解双酚A[J]. 环境工程学报, 2018, 12(10): 2732-2740. doi: 10.12030/j.cjee.201801075
GU Yong, SUN Xianbo, LIU Yongdi. Enhancement on bisphenol A (BPA) degradation in Fe2+/Na2S2O8 system with hydroxylamine and tartaric acid[J]. Chinese Journal of Environmental Engineering, 2018, 12(10): 2732-2740. doi: 10.12030/j.cjee.201801075
Citation: GU Yong, SUN Xianbo, LIU Yongdi. Enhancement on bisphenol A (BPA) degradation in Fe2+/Na2S2O8 system with hydroxylamine and tartaric acid[J]. Chinese Journal of Environmental Engineering, 2018, 12(10): 2732-2740. doi: 10.12030/j.cjee.201801075

盐酸羟胺和酒石酸强化Fe2+/Na2S2O8体系降解双酚A

  • 基金项目:

Enhancement on bisphenol A (BPA) degradation in Fe2+/Na2S2O8 system with hydroxylamine and tartaric acid

  • Fund Project:
  • 摘要: Fe2+/Na2S2O8(persulfate,PS)体系中存在Fe2+易发生沉淀且Fe3+无法还原的问题,以典型的持久性有机污染物双酚A(bisphenol A,BPA)为研究对象,分别考察络合剂酒石酸(tartaric acid,TA)和还原剂盐酸羟胺(hydroxylamine,HA)强化Fe2+/PS体系对双酚A降解过程的影响。在Fe2+/TA/PS体系、Fe2+/HA /PS体系及Fe2+/TA/HA/PS体系中分别考察了盐酸羟胺投加量、酒石酸投加量、体系pH作用范围等因素的影响,同时对氧化作用机理加以分析。研究表明:酒石酸和盐酸羟胺均能提高双酚A在Fe2+/PS体系中的去除率,且均具有最优值;络合剂酒石酸起到长期促进作用,而还原剂盐酸羟胺起到短期促进作用。探针实验表明络合剂和还原剂共同强化的体系中·OH和SO4·-仍然是主要的氧化物种。当PS投加量均为2.64 mmol·L-1时,30 min内Fe2+/TA/HA/PS体系中SO4·-的生成量为11.3 μmol·L-1,而Fe2+/PS体系中SO4·-的生成量为1.4 μmol·L-1,表明体系通过加速了自由基生成速率从而加快了双酚A的降解。研究结果表明Fe2+/TA/HA/PS体系在中性条件下实现了对双酚A的强化降解,显著优于Fe2+/PS体系。
  • 加载中
  • [1] BURRIDGE E.Bisphenol A: Product profile[J].European Chemical News, 2003, 17:14-20
    [2] WETHERILL Y B, AKINGBEMI B T, KANNO J, et al.In vitro, molecular mechanisms of bisphenol A action [J].Reproductive Toxicology, 2007, 24(2):178-198 10.1016/j.reprotox.2007.05.010
    [3] RICHTER C A, BIRNBAUM L S, FARABOLLINI F, et al.In vivo, effects of bisphenol A in laboratory rodent studies[J].Reproductive Toxicology, 2006, 24(2):199-224 10.1016/j.reprotox.2007.06.004
    [4] GOULD J C, LEONARD L S, MANESS S C, et al.Bisphenol A interacts with the estrogen receptor α, in a distinct manner from estradiol[J].Molecular & Cellular Endocrinology, 1998, 142(1/2):203-214 10.1016/S0303-7207(98)00084-7
    [5] KUIPER G G, LEMMEN J G, CARLSSON B, et al.Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta[J].Endocrinology, 1998, 139(10):4252-4263 10.1210/endo.139.10.6216
    [6] 赵进英, 张耀斌, 全燮, 等. 加热和亚铁离子活化过硫酸钠氧化降解4-CP的研究[J]. 环境科学, 2010, 31(5):1233-1238
    [7] 闫海军, 吴云霞, 吉奇, 等. 亚铁离子活化过硫酸钠氧化降解水体中红霉素的研究[J]. 煤炭与化工, 2016, 39(8):5-7
    [8] CHEN K F, KAO C M, WU L C, et al.Methyl tert-butyl ether (MTBE) degradation by ferrous ion-activated persulfate oxidation: Feasibility and kinetics studies[J].Water Environment Research, 2009, 81(7):687-694 10.2175/106143008X370539
    [9] LONG A, YANG L, ZHANG H.Degradation of toluene by a selective ferrous ion activated persulfate oxidation process[J].Industrial & Engineering Chemistry Research, 2014, 53(3):1033-1039 10.1021/ie402633n
    [10] ZOU J, MA J, CHEN L, et al.Rapid acceleration of ferrous iron/peroxymonosulfate oxidation of organic pollutants by promoting Fe(III)/Fe(II) cycle with hydroxylamine[J].Environmental Science & Technology, 2013, 47(20):11685-11691 10.1021/es4019145
    [11] LIANG C J, HUANG C F, MOHANTY N, et al.A rapid spectrophotometric determination of persulfate anion in isco[J].Chemosphere, 2008, 73(9): 1540-1543 10.1016/j.chemosphere.2008.08.043
    [12] 刘永泽. 高级氧化过程中·OH和SO4·-定量分析及溴代副产物生成规律研究[D]. 哈尔滨:哈尔滨工业大学, 2015
    [13] MINISCI F, CITTERIO A, GIORDANO C.Electron-transfer processes: peroxydisulfate, a useful and versatile reagent in organic chemistry[J].Accounts of Chemical Research, 1983, 14(26): 27-32 10.1021/ar00085a005
    [14] LIANG C J, LIANG C P, CHEN C C.pH dependence of persulfate activation by EDTA/Fe(III) for degradation of trichloroethylene[J].Journal of Contaminant Hydrology, 2009, 106(3):173-182 10.1016/j.jconhyd.2009.02.008
    [15] ELSHAFEI G, YEHIA F Z, DIMITRY O.Degradation of nitrobenzene at near neutral pH using Fe2+-glutamate complex as a homogeneous Fenton catalyst[J].Applied Catalysis B:Environmental, 2010, 99(1): 242-247 10.1016/j.apcatb.2010.06.026
    [16] BUXTON G V.Critical view of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (·OH/·OH) in aqueous solution[J].Journal of Physical & Chemical Reference Data, 1988, 17(2):513-886 10.1063/1.555805
    [17] LIANG C, WANG Z S, MOHANTV N.Influences of carbonate and chloride ions on persulfate oxidation of trichloroethylene at 20 ℃[J].Science of the Total Environment, 2006, 370(2/3):271-277 10.1016/j.scitotenv.2006.08.028
    [18] GU X, LU S, LIN L, et al.Oxidation of 1,1,1-trichloroethane stimulated by thermally activated persulfate[J].Industrial & Engineering Chemistry Research, 2014, 50(19):11029-11036 10.1021/ie201059x
    [19] ROSHANI B, LEITNER N K V.The influence of persulfate addition for the degradation of micropollutants by ionizing radiation[J].Chemical Engineering Journal, 2011, 168(2):784-789 10.1016/j.cej.2010.12.023
    [20] ZUO Z, CAI Z, KATSUMURA Y, et al.Reinvestigation of the acid base equilibrium of the (bi)carbonate radical and pH dependence of its reactivity with inorganic reactants[J].Radiation Physics & Chemistry, 1999, 55(1):15-23 10.1016/S0969-806X(98)00308-9
    [21] ROMERO A, SANTOS A, VICENTE F, et al.Diuron abatement using activated persulphate: Effect of pH, Fe(II) and oxidant dosage[J] 10.1016/j.cej.2010.05.044
    [22] ZHOU L, ZHENG W, JI Y, et al.Ferrous-activated persulfate oxidation of arsenic(III) and diuron in aquatic system[J].Journal of Hazardous Materials, 2013, 263(2):422-430 10.1016/j.jhazmat.2013.09.056
    [23] HUANG W, BRIGANTE M, FENG W, et al.Assessment of the Fe(III)-EDDS complex in fenton-like processes: From the radical formation to the degradation of bisphenol A[J].Environmental Science & Technology, 2013, 47(4):1952-1959 10.1021/es304502y
    [24] MASOMBOON N, RATANATAMSKUL C, LU M C.Chemical oxidation of 2,6-dimethylaniline in the Fenton process[J].Environmental Science & Technology, 2009, 43(22):8629-8634 10.1021/es802274h
  • 加载中
计量
  • 文章访问数:  2506
  • HTML全文浏览数:  2366
  • PDF下载数:  168
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-10-11

盐酸羟胺和酒石酸强化Fe2+/Na2S2O8体系降解双酚A

  • 1. 华东理工大学资源与环境工程学院,国家环境保护化工过程环境风险评价与控制重点实验室,上海 200237
基金项目:

摘要: Fe2+/Na2S2O8(persulfate,PS)体系中存在Fe2+易发生沉淀且Fe3+无法还原的问题,以典型的持久性有机污染物双酚A(bisphenol A,BPA)为研究对象,分别考察络合剂酒石酸(tartaric acid,TA)和还原剂盐酸羟胺(hydroxylamine,HA)强化Fe2+/PS体系对双酚A降解过程的影响。在Fe2+/TA/PS体系、Fe2+/HA /PS体系及Fe2+/TA/HA/PS体系中分别考察了盐酸羟胺投加量、酒石酸投加量、体系pH作用范围等因素的影响,同时对氧化作用机理加以分析。研究表明:酒石酸和盐酸羟胺均能提高双酚A在Fe2+/PS体系中的去除率,且均具有最优值;络合剂酒石酸起到长期促进作用,而还原剂盐酸羟胺起到短期促进作用。探针实验表明络合剂和还原剂共同强化的体系中·OH和SO4·-仍然是主要的氧化物种。当PS投加量均为2.64 mmol·L-1时,30 min内Fe2+/TA/HA/PS体系中SO4·-的生成量为11.3 μmol·L-1,而Fe2+/PS体系中SO4·-的生成量为1.4 μmol·L-1,表明体系通过加速了自由基生成速率从而加快了双酚A的降解。研究结果表明Fe2+/TA/HA/PS体系在中性条件下实现了对双酚A的强化降解,显著优于Fe2+/PS体系。

English Abstract

参考文献 (24)

目录

/

返回文章
返回