Cd污染土壤的电动修复及其强化

万玉山, 沈梦, 陈艳秋, 韩惠, 温馨, 王明新. Cd污染土壤的电动修复及其强化[J]. 环境工程学报, 2018, 12(7): 2075-2083. doi: 10.12030/j.cjee.201801029
引用本文: 万玉山, 沈梦, 陈艳秋, 韩惠, 温馨, 王明新. Cd污染土壤的电动修复及其强化[J]. 环境工程学报, 2018, 12(7): 2075-2083. doi: 10.12030/j.cjee.201801029
WAN Yushan, SHEN Meng, CHEN Yanqiu, HAN Hui, WEN Xin, WANG Mingxin. Electrokinetic remediation of Cd contaminated soil and its reinforcement measures[J]. Chinese Journal of Environmental Engineering, 2018, 12(7): 2075-2083. doi: 10.12030/j.cjee.201801029
Citation: WAN Yushan, SHEN Meng, CHEN Yanqiu, HAN Hui, WEN Xin, WANG Mingxin. Electrokinetic remediation of Cd contaminated soil and its reinforcement measures[J]. Chinese Journal of Environmental Engineering, 2018, 12(7): 2075-2083. doi: 10.12030/j.cjee.201801029

Cd污染土壤的电动修复及其强化

  • 基金项目:

    国家自然科学基金资助项目(41641032)

Electrokinetic remediation of Cd contaminated soil and its reinforcement measures

  • Fund Project:
  • 摘要: 为了提高电动修复镉污染土壤的效率,通过配制镉污染土壤,搭建电动修复实验装置,研究电场强度、电解液种类和添加膨润土对电动修复镉污染土壤中总Cd去除率的影响。结果表明,电动修复时间120 h,电场强度从2.5 V·cm-1增加至3 V·cm-1时,总Cd去除率增加10.62%,电场强度从3 V·cm-1增加到3.5 V·cm-1时,去除率增加1.87%;与柠檬酸为电解液对比,乙酸的总Cd去除率增加12.14%,总耗能增加62.13%,盐酸的总Cd去除率增加18.04%,总耗能增加了187.9%;乙酸为电解液,阴阳两极电解液循环与不循环相比总Cd去除率增加25.48%,能耗增加13.69%;在靠近阴极、中部及靠近阳极土壤中添加膨润土墙,总Cd去除率分别上升20.89%、18.22%、10.67%,能耗分别降低11.00%、13.43%、13.73%。循环电解液能有效减缓电阻极化和浓差极化现象并提高总镉去除率。电动修复联合膨润土吸附,能提高土壤中的总镉去除率,同时降低能耗。
  • 加载中
  • [1] 环境保护部,国土资源部.全国土壤污染状况调查公报[J].中国环保产业,2014,36(5):10-11
    [2] XU Y,XU X,HOU H, et al.Moisture content-affected electrokinetic remediation of Cr (VI)-contaminated clay by a hydrocalumite barrier[J].Environmental Science and Pollution Research,2016,23(7):6517-6523 10.1007/s11356-015-5685-y
    [3] 马彩云,蔡定建,严宏.土壤镉污染及其治理技术研究进展[J].河南化工,2013,30(16):17-22
    [4] 郭晓方,卫泽斌,吴启堂.乙二胺四乙酸在重金属污染土壤修复过程的降解及残留[J].农业工程学报,2015,31(7):272-278 10.3969/jissn.1002.6819.2015.07.038
    [5] 李韵诗,冯冲凌,吴晓芙,等.重金属污染土壤植物修复中的微生物功能研究进展[J].生态学报,2015,35(20):6881-6890
    [6] 许妍哲,方战强.生物炭修复土壤重金属的研究进展[J].环境工程,2015,33(2):156-159
    [7] 范筱林,王中正.土壤原位修复技术研究进展[J].农业与技术,2015,35(18):29-30
    [8] LAGEMAN R.Electroreclamation applications in the netherlands[J].Environmental Science & Technology,1993,27(13):2648-2650 10.1021/es00049a003
    [9] 彭良梅.电动法及其增强技术修复镉污染土壤的试验研究[D].成都:成都理工大学,2013
    [10] MENA E,VILLASENOR J, CANIZARES P,et al.Influence of electric field on the remediation of polluted soil using a biobarrier assisted electro-bioremediation process[J].Electrochimica Acta,2016,190:294-304 10.1016/j.electacta.2015.12.133
    [11] 高鹏.电动/PRB联合修复铬、砷污染土壤试验研究[D].北京:中国地质大学(北京),2014
    [12] 胡宏韬.电动和渗透反应格栅联合修复镉污染地下水[J].环境工程学报,2009,3(10):1773-1777
    [13] 李亚林.电动修复去除土壤中重金属镉的研究[J].河南工程学院学报(自然科学版),2016,28(1):42-46
    [14] 付融冰,刘芳,马晋,等.可渗透反应复合电极法对铬(Ⅵ)污染土壤的电动修复[J].环境科学,2012,33(1): 280-285
    [15] 刘丹丹,刘菲,缪德仁.土壤重金属连续提取方法的优化[J].现代地质,2015(2):390-396
    [16] 周东美,仓龙,邓昌芬.络合剂和酸度控制对土壤铬电动过程的影响[J].中国环境科学,2005,25(1):10-14
    [17] WANG Q Y,ZHOU D M,CANG L,et al.Application of bioassays to evaluate a copper contaminated soil before and after a pilot-scale electrokinetic remediation[J].Environmental Pollution,2008,157(2):410-414 10.1016/j.envpol.2008.09.036
    [18] 刘慧.铜污染场地土壤的原位电动强化修复[J].环境工程学报,2016,10(7):3877-3883 10.12030/j.cjee.201502112
    [19] 林丹妮,谢国樑,曾彩明,等.不同电压对重金属污染河涌底泥电动修复效果的影响[J].华南农业大学学报,2009,30(3):8-12
    [20] 樊广萍.不同的增强试剂对重金属污染场地土壤的电动修复影响[J].中国环境科学,2015,35(5):1458-1465
    [21] 张海波,李仰锐,徐卫红,等.有机酸、EDTA对不同水稻品种Cd吸收及土壤Cd形态的影响[J].环境科学,2011,32(9):2625-2631
    [22] YUE S.Effect of EDTA,EDDS,NTA and citric acid on electrokinetic remediation of As,Cd,Cr,Cu,Ni,Pb and Zn contaminated dredged marine sediment[J].Environmental Science & Pollution Research International, 2016,23(11):10577-10586 10.1007/s11356-015-5966-5
    [23] 杨艳,汪敏,刘雪云,等.三种有机酸对镉胁迫下油菜生理特性的影响[J].安徽师范大学学报(自然科学版),2007,30(2):158-162
    [24] 丁玲,吕文英,姚琨,等.电动增强技术修复镉污染土壤及其修复机理[J].环境工程学报,2017,11(4):2554-2559 10.12030/j.cjee.201602043
    [25] 关天霞,何红波,张旭东,等.土壤中重金属元素形态分析方法及形态分布的影素因素[J].土壤通报,2011,42(2):503-512
    [26] 张金利,张林林,谷鑫.重金属Pb(Ⅱ)在膨润土上去除特性研究[J].岩土工程学报,2013,35(1):117-123
    [27] 徐奕.膨润土钝化与不同水分灌溉联合处理对酸性稻田土镉污染修复效应及土壤特性的影响[J].环境化学,2017,36(5):1026-1035
    [28] 杨秀敏,钟子楠,潘宇,等.重金属离子在钠基膨润土中的吸附特征与机理[J].环境工程学报,2013,7(7): 2775-2780
  • 加载中
计量
  • 文章访问数:  2448
  • HTML全文浏览数:  2135
  • PDF下载数:  254
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-07-26

Cd污染土壤的电动修复及其强化

  • 1. 常州大学环境与安全工程学院,常州 213164
基金项目:

国家自然科学基金资助项目(41641032)

摘要: 为了提高电动修复镉污染土壤的效率,通过配制镉污染土壤,搭建电动修复实验装置,研究电场强度、电解液种类和添加膨润土对电动修复镉污染土壤中总Cd去除率的影响。结果表明,电动修复时间120 h,电场强度从2.5 V·cm-1增加至3 V·cm-1时,总Cd去除率增加10.62%,电场强度从3 V·cm-1增加到3.5 V·cm-1时,去除率增加1.87%;与柠檬酸为电解液对比,乙酸的总Cd去除率增加12.14%,总耗能增加62.13%,盐酸的总Cd去除率增加18.04%,总耗能增加了187.9%;乙酸为电解液,阴阳两极电解液循环与不循环相比总Cd去除率增加25.48%,能耗增加13.69%;在靠近阴极、中部及靠近阳极土壤中添加膨润土墙,总Cd去除率分别上升20.89%、18.22%、10.67%,能耗分别降低11.00%、13.43%、13.73%。循环电解液能有效减缓电阻极化和浓差极化现象并提高总镉去除率。电动修复联合膨润土吸附,能提高土壤中的总镉去除率,同时降低能耗。

English Abstract

参考文献 (28)

目录

/

返回文章
返回