[1]
|
TOORU I, AKIRA F, SATOSHI K, et al.Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders[J].Nature,1972,7:637-638
|
[2]
|
XU D F, HAI Y, ZHANG X C, et al.Bi2O3 cocatalyst improving photocatalytic hydrogen evolution performance of TiO2[J].Applied Surface Science,2017,0:530-536
|
[3]
|
WANG X J, SONG J K, HUANG J Y, et al.Activated carbon-based magnetic TiO2 photocatalyst codoped with iodine and nitrogen for organic pollution degradation[J].Applied Surface Science,2016,0:190-201
|
[4]
|
GEORGE R, BAHADUR N, SINGH N, et al.Environmentally benign TiO2 nanomaterials for removal of heavy metal ions with interfering ions present in tap[J].Materials Today Proceedings,2016,3(2):162-166
|
[5]
|
PICHAT P, DISDIER J, HOANG-VAN C, et al.Purification/deodorization of indoor air and gaseous effluents by TiO2 photocatalysis[J].Catalysis Today,2000,3(2/3/4):363-369
|
[6]
|
ZHANG L, GAO Q, HAN Y.Zn and Ag Co-doped anti-microbial TiO2 coatings on Ti by micro-arc oxidation[J].Journal of Materials Science & Technology,2016,2(9):919-924
|
[7]
|
SAMOKHVALOV A.Hydrogen by photocatalysis with nitrogen codoped titanium dioxide[J].Renewable and Sustainable Energy Reviews,2017,2:981-1000
|
[8]
|
CHOW K L, MAN Y B, TAM N F Y, et al.Removal of decabromodiphenyl ether (BDE-209) using a combined system involving TiO2 photocatalysis and wetland plants[J].Journal of Hazardous Materials,2017,2:263-269
|
[9]
|
CHENG G, XU F F, XIONG J Y, et al.A novel protocol to design TiO2-Fe2O3 hybrids with effective charge separation efficiency for improved photocatalysis[J].Advanced Powder Technology,2017,8(2):665-670
|
[10]
|
LIU H H, CHEN D L, WANG Z Q, et al.Microwave-assisted molten-salt rapid synthesis of isotype triazine-/heptazine based g-C3N4 heterojunctions with highly enhanced photocatalytic hydrogen evolution performance[J].Applied Catalysis B: Environmental,2017,3:300-313
|
[11]
|
MIAO J L, XU G Q, LIU J Q, et al.Synthesis and photocatalytic performance of g-C3N4 nanosheets via liquid phase stripping[J].Journal of Solid State Chemistry,2017,6:186-193
|
[12]
|
ZIMMERMAN J L, WILLIAMS R, KHABASHESKU V N, et al.Preparation of sphere-shaped nanoscale carbon nitride polymer[J].Russian Chemical Bulletin,2001,0(11):2020-2027
|
[13]
|
ZHANG J, CHEN X, TAKANABE K, et al.Synthesis of a carbon nitride structure for visible-light catalysis by copolymerization[J].Angewandte Chemie,2010,9(2):441-444
|
[14]
|
GU Y, CHEN L, SHI L, et al.Synthesis of C3N4 and graphite by reacting cyanuric chloride with calcium cyanamide[J].Carbon,2003,1(13):2674-2676
|
[15]
|
ZHU Z, TANG X, MA C C, et al.Fabrication of conductive and high-dispersed Ppy@Ag/g-C3N4 composite photocatalysts for removing various pollutants in water[J].Applied Surface Science,2016,7:366-374
|
[16]
|
YUAN X Y, LI W Y.Graphitic-C3N4 modified ZnAl-layered double hydroxides for enhanced photocatalytic removal of organic dye[J].Applied Clay Science,2017,8:107-113
|
[17]
|
LIU Q, CHEN T X, GUO Y R.Grafting Fe(Ⅲ) species on carbon nanodots/Fe-doped g-C3N4 via interfacial charge transfer effect for highly improved photocatalytic performance[J].Applied Catalysis B: Environmental,2017,5:173-181
|
[18]
|
LIU L, MA D, ZHENG H, et al.Synthesis and characterization of microporous carbon nitride[J].Microporous and Mesoporous Materials,2008,0(2):216-222
|
[19]
|
XING W N, LI C M, CHEN G, et al.Incorporating a novel metal-free interlayer into g-C3N4 framework for efficiency enhanced photocatalytic H2 evolution activity[J].Applied Catalysis B: Environmental,2017,3:65-71
|
[20]
|
YANG H, LV K L, ZhU J J, et al.Effect of mesoporous g-C3N4 substrate on catalytic oxidation of CO over Co3O4[J].Applied Surface Science,2017,1:333-340
|
[21]
|
ZHANG Y, GONG H H, LI G X, et al.Synthesis of graphitic carbon nitride by heating mixture of urea and thiourea for enhanced photocatalytic H2 production from water under visible light[J].International Journal of Hydrogen Energy,2017,2(1):143-151
|
[22]
|
YANG X L, QIAN F F, ZOU G J, et al.Facile fabrication of acidified g-C3N4/g-C3N4 hybrids with enhanced photocatalysis performance under visible light irradiation[J].Applied Catalysis B: Environmental,2016,3:22-35
|
[23]
|
HU W D, YU J X, JIANG X L, Enhanced photocatalytic activity of g-C3N4 via modification of NiMoO4 nanorods[J].Colloids and Surfaces A: Physicochemical and Engineering Aspects,2017,4:98-106
|
[24]
|
SENTHIL R A, THEERTHAGIRI J, SELVI A, et al.Synthesis and characterization of low-cost g-C3N4/TiO2 composite with enhanced photocatalytic performance under visible-light irradiation[J].Optical Materials,2017,4:533-539
|
[25]
|
LONGBO J, XING Z Y, YANG P, et al.Doping of graphitic carbon nitride for photocatalysis:A review[J].Applied Catalysis B:Environmental,2017,7:388-406
|
[26]
|
LIU Y, YUAN X Z, WANG H, et al.Solvothermal synthesis of graphene/BiOC l0.75Br0.25 microspheres with excellent visible-light photocatalytic activity[J].RSC Advances,2015,5(42):33696-33704
|
[27]
|
ZHANG Y L, XIE C R, GU F L, et al.Significant visible-light photocatalytic enhancement in rhodamine B degradation of silver orthophosphate via the hybridization of N-doped graphene and poly(3-hexylthiophene)[J].Journal of Hazardous Materials,2016,5:23-34
|