埋地储罐清洗无组织排放油气冷凝法净化工艺模拟分析
Simulated analysis of condensation process for oil vapor fugitive emission from underground oil storage tank cleaning step
-
摘要: 针对净化埋地储罐清洗无组织排放油气水蒸气和HC浓度高的特点,采用Aspen软件的Flash 2模拟了单组分和多组分有机废气的冷凝过程,研究了水蒸气含量、冷凝温度、有机物结构等因素对液相回收率的影响,并模拟计算了3级冷凝工艺的净化效率。结果表明:温度低于0 ℃时,气体中水蒸气浓度不影响液相水的冷凝效率;对于C6H14废气,冷凝温度和同分异构是影响有机组分回收效率的重要因素,正己烷的全回收温度(T99.5%)比2,2-二甲基丁烷高15 ℃,模拟结果计算正己烷的摩尔蒸发焓为34.758 kJ·mol-1,与理论值接近;当采用温度分别为0、-40和-75 ℃ 3级冷凝工艺时,液相HC回收率达到77.2%。Abstract: Flash 2 in Aspen software was used to simulate the condensation process to treat the oil vapor from fugitive emission in underground oil storage tank cleaning step in this paper. Due to the characteristic of the higher concentration of water vapor and HC in the oil vapor, the effects of water vapor content, condensation temperature, and organic structure on the recovery efficiency were investigated on the single component or multicomponent organic waste gas, and the purification efficiency of three-stage condensation process was also simulated and calculated. The results showed that when the temperature was lower than 0 ℃, the recovery of liquid water was not affected by water vapor concentration. For C6H14-contained waste gas, the condensing temperature and the isomeric structure were the major factors for the recovery efficiency, T99.5% of n-hexane was 15 ℃ higher than that of 2,2-dimethyl-butane. The molar vaporization enthalpy of n-hexane calculated with Aspen results was 34.758 kJ·mol-1, and was close to the theoretical value. When the temperatures of the three-stage condensation process were set as 0,-40 and -75 ℃, the recovery of liquid HC reached 77.2%.
-
Key words:
- underground oil storage tank cleaning /
- oil vapor emission /
- Aspen /
- condensation
-
[1] 白广臣.加油站埋地油罐清洗技术现状及清洗技术选择[J].石油库与加油站,2012,1(4):5-8 [2] 袁平,刘传平,周金伟,等.论原油储罐清洗技术较人工清罐的先进性[J].清洗世界,2014,0(1):19-22 [3] 石熠,陈家庆,刘美丽.卧式储油罐机械清洗技术研究进展[J].清洗世界,2014,0(11):36-41 [4] 黄维秋,吕艳丽.油气吸附剂及其改性方法[J].环境工程学报,2010,4(9):1926-1931 [5] 栾志强,郝郑平,王喜芹,等.工业固定源VOCs治理技术分析评估[J].环境科学,2011,2(12):3476-3486 [6] ZHU L, CHEN J Q, LIU Y, et al.Experimental analysis of evaporation process for gasoline[J].Journal of Loss Prevention in the Process Industries,2012,5(6):916-922 [7] 朱玲,陈家庆,柳岩,等.汽油挥发过程的试验分析[J].车用发动机,2011(2):68-72 [8] 陈家庆,朱玲.油气回收与排放控制技术[M].北京:中国石化出版社,2010 [9] 黄维秋,彭群,李贝贝.利用Aspen模拟软件优化冷凝法油气回收工艺[J].石油与天然气化工,2009,8(4):313-315 [10] 徐言生,余华明.基于Aspen Plus的自然复叠制冷系统过程模拟分析[J].顺德职业技术学院学报,2009,7(4):29-31 [11] 杨叶.冷凝式油气回收系统设计研究[D].合肥:合肥工业大学,2012 [12] 李应林,谭来仔,张小松.基于多种状态方程模型的冷凝法油气回收对比[J].化工学报,2014,5(3):785-791 [13] 许国华,黄永华,张鹏,等.流体混合物热力学性质计算的混合法则新进展[J].低温与超导,2008,6(8):31-36 [14] 李廷勋,刘志刚.基于PR方程的气液相平衡计算[J].广东工业大学学报,1999,6(1):29-34 [15] 马天琦,李红旗,孙乐冷.凝法甲苯回收系统设计优化[J].制冷与空调,2014,4(10):47-51 [16] 刘光启,马连相,项曙光.化学化工物性数据手册:有机卷[M].北京:化学工业出版社,2013 [17] 孟繁磊,周祥,郭锦标,等.焦国凤异构烷烃的有效碳数与物性关联研究[J].计算机与应用化学,2010,7(12):1638-1642 [18] 赵志伟,杜垲.冷凝法油气回收技术中的油气冷凝特性分析[J].流体机械,2009,7(9):67-70 [19] SHI L, HUANG W Q.Sensitivity analysis and optimization for gasoline vapor condensation recovery[J].Process Safety and Environmental Protection,2013,2:807-814 [20] 杨叶,王铁军,王蒙,等.冷凝式油气回收系统设计研究[J].低温与超导,2011,0(1):15-17
计量
- 文章访问数: 2972
- HTML全文浏览数: 2568
- PDF下载数: 487
- 施引文献: 0