Fe(Ⅱ)协同过硫酸钾改善河道底泥的脱水性能

李丹, 蓝师哲, 何岩, 黄民生. Fe(Ⅱ)协同过硫酸钾改善河道底泥的脱水性能[J]. 环境工程学报, 2018, 12(1): 338-348. doi: 10.12030/j.cjee.201703183
引用本文: 李丹, 蓝师哲, 何岩, 黄民生. Fe(Ⅱ)协同过硫酸钾改善河道底泥的脱水性能[J]. 环境工程学报, 2018, 12(1): 338-348. doi: 10.12030/j.cjee.201703183
LI Dan, LAN Shizhe, HE Yan, HUANG Minsheng. Dehydration property of river sediment with combined conditioning using Fe(Ⅱ)-potassium persulfate[J]. Chinese Journal of Environmental Engineering, 2018, 12(1): 338-348. doi: 10.12030/j.cjee.201703183
Citation: LI Dan, LAN Shizhe, HE Yan, HUANG Minsheng. Dehydration property of river sediment with combined conditioning using Fe(Ⅱ)-potassium persulfate[J]. Chinese Journal of Environmental Engineering, 2018, 12(1): 338-348. doi: 10.12030/j.cjee.201703183

Fe(Ⅱ)协同过硫酸钾改善河道底泥的脱水性能

  • 基金项目:

    上海市自然科学基金资助项目 (16ZR1408800)

    上海市浦江人才计划 (16PJD023)

    上海市大学生科研创新项目

    国家水体污染控制与治理科技重大专项(2013ZX07310001,2014ZX07101012)

Dehydration property of river sediment with combined conditioning using Fe(Ⅱ)-potassium persulfate

  • Fund Project:
  • 摘要: 含水率是影响河道底泥后续处置效果与成本的重要因素,采用响应曲面法(RSM)和中心复合设计法(CCD)对Fe(Ⅱ)-过硫酸钾(K2S2O8)优化河道底泥脱水性能进行研究。结果表明,K2S2O8投加量为22.26 mg·g-1 TSS、Fe(Ⅱ)投加量为43.63 mg·g-1 TSS (K2S2O8和Fe(Ⅱ)投加摩尔比为1∶1.9),初始pH为5.95时,其脱水效果最佳,CST削减率在10 min内能够达到86.16%,与优化响应器拟合的最佳CST削减率86.44%基本一致。基于RSM建立CST削减率预测模型,模型的相关系数R2和R2adj分别为0.905 8和0.821 1,拟合度良好。经回归模型方差分析(ANOVA),底泥脱水效率受Fe(Ⅱ)投加量影响最大(P2S2O8投加量。与市场上常用聚合硫酸铁(PFS)和聚丙烯酰胺(PAM)相比,具有优越的经济性和良好的脱水效果。
  • 加载中
  • [1] JING L D, WU C X, LIU J T.The effects of dredging on nitrogen balance in sediment-water microcosms and implications to dredging projects[J].Ecological Engineering,2013,52:167-174
    [2] 钟继承, 范成新.底泥疏浚效果及环境效应研究进展[J].湖泊科学,2007,19(1):1-10
    [3] TYAGI V K, LO S L.Microwave irradiation: A sustainable way for sludge treatment and resource recovery[J].Renewable & Sustainable Energy Reviews,2013,18:288-305
    [4] 高健磊, 闫怡新, 吴建平, 等.城市污水处理厂污泥脱水性能研究[J].环境科学与技术,2008,31(2):108-111
    [5] WATANABE Y, KKUBO A, SATO S.Application of amphoteric polyelectrolytes for sludge dewatering[J].Langmuir,1999,15(12):4157-4164
    [6] KWON J H, PARK K Y, PARK J H, et al.Acidic and hydrogen peroxide treatment of polyaluminum chloride (PACL) sludge from water treatment[J].Water Science and Technology,2004,50(9):99-105
    [7] ZHEN G Y, LU X Q, LI Y Y, et al.Innovative combination of electrolysis and Fe(Ⅱ)-activated persulfate oxidation for improving the dewaterability of waste activated sludge[J].Bioresource Technology,2013,136(3):654-663
    [8] ZHEN G Y, LU X Q, NIU J, et al.Inhibitory effects of a shock load of Fe(Ⅱ)-mediated persulfate oxidation on waste activated sludge anaerobic digestion[J].Chemical Engineering Journal,2013,233(11):274-281
    [9] ZHEN G Y, LU X Q, ZHAO Y C, et al.Enhanced dewaterability of sewage sludge in the presence of Fe(Ⅱ)-activated persulfate oxidation[J].Bioresource Technology,2012,116(4):259-265
    [10] ZHEN G Y, LU X Q, WANG B Y, et al.Enhanced dewatering characteristics of waste activated sludge with Fenton pretreatment: Effectiveness and statistical optimization[J].Frontiers of Environmental Science and Engineering,2014,8(2):267-276
    [11] APHA (American Public Health Association).Standard methods for the examination of water and wastewater[S].Washington D.C.: American Public Health Association,1998
    [12] TONY M A, ZHAO Y Q, FU J F, et al.Conditioning of aluminium-based water treatment sludge with Fenton’s reagent: Effectiveness and optimising study to improve dewaterability[J].Chemosphere,2008,72(4):673-677
    [13] AHMAD A L, ISMAIL S, BHATIA S.Optimization of coagulation-flocculation process for palm oil mill effluent using response surface methodology[J].Environmental Science & Technology,2005,39(8):2828-2834
    [14] MOHAJERI S, AZIZ H A, ISA M H, et al.Statistical optimization of process parameters for landfill leachate treatment using electro-Fenton technique[J].Journal of Hazardous Materials,2010,176(1/2/3):749-758
    [15] WANG X, NIU D J, YANG X S, et al.Optimization of methane fermentation from effluent of bio-hydrogen fermentation process using response surface methodology[J].Bioresource Technology,2008,99(10):4292-4299
    [16] YUAN H P, ZHU N W, SONG L J.Conditioning of sewage sludge with electrolysis: Effectiveness and optimizing study to improve dewaterability[J].Bioresource Technology,2010,101(12):4285-4290
    [17] MATZEK L W, CARTER K E.Activated persulfate for organic chemical degradation: A review[J].Chemosphere,2016,151:178-188
    [18] ZHEN G Y, LU X Q, WANG B Y, et al.Synergetic pretreatment of waste activated sludge by Fe(Ⅱ)-activated persulfate oxidation under mild temperature for enhanced dewaterability[J].Bioresource Technology,2012,124(9):29-36
    [19] ZHEN G Y, LU X Q, LI Y Y, et al.Novel insights into enhanced dewaterability of waste activated sludge by Fe (Ⅱ)-activated persulfate oxidation[J].Bioresource Technology,2012,119(9):7-14
    [20] LIANG C J, SU H W.Identification of sulfate and hydroxyl radicals in thermally activated persulfate[J].Industrial & Engineering Chemistry Research,2009,48(11):5558-5562
    [21] YANG S, YANG X, SHAO X, et al.Activated carbon catalyzed persulfate oxidation of azo dye acid orange 7 at ambient temperature[J].Journal of Hazardous Materials,2011,186(1):659-666
    [22] YAN J, LEI M, ZHU L.Degradation of sulfamonomethoxine with Fe3O4 magnetic nanoparticles as heterogeneous activator of persulfate[J].Journal of Hazardous Materials,2011,186(2/3):1398-1404
    [23] RASTOGI A, AL-ABED S R, DIONYSIOU D D.Sulfate radical-based ferrous peroxymonosulfate oxidative system for PCBs degradation in aqueous and sediment systems[J].Applied Catalysis B: Environmental,2009,85(3/4):171-179
    [24] GU N, WU Y X, GAO J L, et al.Microcystis aeruginosa removal by in situ chemical oxidation using persulfate activated by Fe2+ions[J].Ecological Engineering,2017,99:290-297
    [25] BU L J, SHI Z, ZHOU S Q.Modeling of Fe(Ⅱ)-activated persulfate oxidation using atrazine as a target contaminant[J].Separation and Purification Technology,2016,169:59-65
    [26] LENG Y Q, GUO W L, SHI X, et al.Degradation of rhodamine B by persulfate activated with Fe3O4 effect of polyhydroquinone serving as an electron shuttle[J].Chemical Enginerring Journal,2014,240(6):338-343
    [27] LI H X, WAN J Q, MA Y W, et al.Reaction pathway and oxidation mechanisms of dibutyl phthalate by persulfate activated with zero-valent iron[J].Science of the Total Environment,2016,562:889-897
    [28] TAN C Q, GAO N Y, DENG Y.Heat-activated persulfate oxidation of diuron in water[J].Chemical Engineering Journal,2012,203(5):294-300
    [29] GU X G, LU S G, LI L, et al.Oxidation of 1, 1, 1-trichloroethanestimulated by thermally activated persulfate[J].Industrial & Engineering Chemistry Research,2011,50(19):11029-11036
    [30] GAO H P, CHEN J B, ZHANG Y L, et al.Sulfate radicals induced degradation of triclosan in thermally activated persulfate system[J].Chemical Engineering Journal,2016,6:522-530
    [31] ZHEN G Y, LU X Q, ZHAO Y C, et al.Enhanced dewaterability of sewage sludge in the presence of Fe(II)-activated persulfate oxidation[J].Bioresource Technology,2012,6:259-265
    [32] 张强, 刘欢, 刘鹏, 等.调理剂对深度脱水污泥热解特性的影响[J].化工学报,2014,65(4):1396-1402
  • 加载中
计量
  • 文章访问数:  2123
  • HTML全文浏览数:  1860
  • PDF下载数:  337
  • 施引文献:  0
出版历程
  • 刊出日期:  2018-01-14

Fe(Ⅱ)协同过硫酸钾改善河道底泥的脱水性能

  • 1. 华东师范大学上海市城市化生态过程与生态恢复重点实验室,上海 200241
  • 2. 华东师范大学生态与环境科学学院,上海 200241
  • 3. 华东师范大学崇明生态研究院,上海 200241
基金项目:

上海市自然科学基金资助项目 (16ZR1408800)

上海市浦江人才计划 (16PJD023)

上海市大学生科研创新项目

国家水体污染控制与治理科技重大专项(2013ZX07310001,2014ZX07101012)

摘要: 含水率是影响河道底泥后续处置效果与成本的重要因素,采用响应曲面法(RSM)和中心复合设计法(CCD)对Fe(Ⅱ)-过硫酸钾(K2S2O8)优化河道底泥脱水性能进行研究。结果表明,K2S2O8投加量为22.26 mg·g-1 TSS、Fe(Ⅱ)投加量为43.63 mg·g-1 TSS (K2S2O8和Fe(Ⅱ)投加摩尔比为1∶1.9),初始pH为5.95时,其脱水效果最佳,CST削减率在10 min内能够达到86.16%,与优化响应器拟合的最佳CST削减率86.44%基本一致。基于RSM建立CST削减率预测模型,模型的相关系数R2和R2adj分别为0.905 8和0.821 1,拟合度良好。经回归模型方差分析(ANOVA),底泥脱水效率受Fe(Ⅱ)投加量影响最大(P2S2O8投加量。与市场上常用聚合硫酸铁(PFS)和聚丙烯酰胺(PAM)相比,具有优越的经济性和良好的脱水效果。

English Abstract

参考文献 (32)

目录

/

返回文章
返回