酸化相发酵类型对甲烷相产甲烷性能的影响

陈雪, 李秀金, 张文海, 张立东, 朱海燕, 刘研萍, 袁海荣, 庞云芝, 浦鹏. 酸化相发酵类型对甲烷相产甲烷性能的影响[J]. 环境工程学报, 2017, 11(11): 6007-6013. doi: 10.12030/j.cjee.201612153
引用本文: 陈雪, 李秀金, 张文海, 张立东, 朱海燕, 刘研萍, 袁海荣, 庞云芝, 浦鹏. 酸化相发酵类型对甲烷相产甲烷性能的影响[J]. 环境工程学报, 2017, 11(11): 6007-6013. doi: 10.12030/j.cjee.201612153
CHEN Xue, LI Xiujin, ZHANG Wenhai, ZHANG Lidong, ZHU Haiyan, LIU Yanping, YUAN Hairong, PANG Yunzhi, PU Peng. Effects of fermentation type of acidogenic phase on biomethane yield of methanogenic phase[J]. Chinese Journal of Environmental Engineering, 2017, 11(11): 6007-6013. doi: 10.12030/j.cjee.201612153
Citation: CHEN Xue, LI Xiujin, ZHANG Wenhai, ZHANG Lidong, ZHU Haiyan, LIU Yanping, YUAN Hairong, PANG Yunzhi, PU Peng. Effects of fermentation type of acidogenic phase on biomethane yield of methanogenic phase[J]. Chinese Journal of Environmental Engineering, 2017, 11(11): 6007-6013. doi: 10.12030/j.cjee.201612153

酸化相发酵类型对甲烷相产甲烷性能的影响

  • 基金项目:

    国家科技支撑计划(2014BAC24B01,2014BAL05B03,2015BAD21B03)

  • 中图分类号: X705

Effects of fermentation type of acidogenic phase on biomethane yield of methanogenic phase

  • Fund Project:
  • 摘要: 以餐厨垃圾和稻草为原料,通过调节酸化相的pH、氧化还原电位(ORP)和进料负荷(OLR),对酸化相的产酸发酵类型和不同酸化类型的产甲烷性能进行了研究。结果表明:当酸化相的pH 5.5时,发酵类型为丁酸型发酵;在乙醇型发酵和丁酸型发酵相互转换的过程中,会出现混合型发酵。从酸化效果方面来看,丁酸型发酵的产酸性能最优,酸化度为36%。同时,丁酸型发酵酸化产物的产甲烷性能最好,累计甲烷产率为535 mL·g-1 VS。通过PCR-DGGE的微生物菌群鉴定结果可知,在两相厌氧消化过程中,酸化相中的优势菌种主要以拟杆菌属(Bacteroidetes)和乳酸杆菌属(Lactobacillus)为主,甲烷相中的优势菌种以乳酸杆菌属(Lactobacillus)为主。
  • 加载中
  • [1] LI R, CHEN S, LI X, et al. Anaerobic codigestion of kitchen waste with cattle manure for biogas production[J]. Energy & Fuels, 2009, 23(4):2225-2228
    [2] MA B, SONG G, ZHANG L, et al. Explaining sectoral discrepancies between national and provincial statistics in China[J]. China Economic Review, 2014, 30(C):353-369
    [3] REN N, LIU M, WANG A, et al. Organic acids conversion in methanogenic-phase reactor of the two-phase anaerobic process[J]. Environmental Science, 2003, 24(4):89-93
    [4] PULLAMMANAPPALLIL P C, CHYNOWETH D P, LYBERATOS G, et al. Stable performance of anaerobic digestion in the presence of a high concentration of propionic acid[J]. Bioresource Technology, 2001, 78(2):165-169
    [5] RAMOS C, BUITRON G, MORENO-ANDRADE I, et al. Effect of the initial total solids concentration and initial pH on the bio-hydrogen production from cafeteria food waste[J]. International Journal of Hydrogen Energy, 2012, 37(18):13288-13295
    [6] LI X, DAI Z Z, WANG Y H, et al. Enhancement of phototrophic hydrogen production by Rhodobacter sphaeroides ZX-5 using fed-batch operation based on ORP level[J]. Fuel & Energy Abstracts, 2011, 36(20):12794-12802
    [7] OKTEM Y A, INCE O, DONNELLY T, et al. Determination of optimum operating conditions of an acidification reactor treating a chemical synthesis-based pharmaceutical wastewater[J]. Process Biochemistry, 2006, 41(11):2258-2263
    [8] WANG L, ZHOU Q, LI F T. Avoiding propionic acid accumulation in the anaerobic process for biohydrogen production[J]. Biomass & Bioenergy, 2006, 30(2):177-182
    [9] 陈甲甲,袁海荣,王奎升,等. 机械搅拌转速对稻草厌氧消化性能的影响[J]. 可再生能源. 2012, 30(2):62-65
    [10] OROZCO A M, NIZAMI A S, MURPHY J D, et al. Optimizing the thermophilic hydrolysis of grass silage in a two-phase anaerobic digestion system[J]. Bioresource Technology, 2013, 143(3):117-125
    [11] CHEN H, WU H. Optimization of volatile fatty acid production with co-substrate of food wastes and dewatered excess sludge using response surface methodology[J]. Bioresource Technology, 2010, 101(14):5487-5493
    [12] ZWIELEHNER J, LISZT K, HANDSCHUR M, et al. Combined PCR-DGGE fingerprinting and quantitative-PCR indicates shifts in fecal population sizes and diversity of Bacteroides, bifidobacteria and Clostridium cluster IV in institutionalized elderly[J]. Experimental gerontology, 2009, 44(6):440-446
    [13] AWWA A. Standard methods for the examination of water and wastewater[S]. Washington, DC:Standard Methods for the Examination of Water and Wastewater, 1998:20
    [14] REN N Q, CHUA H, CHAN S Y, et al. Assessing optimal fermentation type for bio-hydrogen production in continuous-flow acidogenic reactors[J]. Bioresource Technology, 2007, 98(9):1774-1780
    [15] 郑明月, 郑明霞, 王凯军,等. 温度、pH和负荷对果蔬垃圾厌氧酸化途径的影响[J]. 可再生能源, 2012,30(4):75-79
    [16] LI J, ZHENG G, HE J, et al. Hydrogen-producing capability of anaerobic activated sludge in three types of fermentations in a continuous stirred-tank reactor[J]. Biotechnology Advances, 2009, 27(5):573-577
    [17] 胡锋平. 氨氮对中温厌氧处理抑制作用的试验研究[J]. 中国给水排水,1997(s1):19-21
    [18] RAJAGOPAL R, MASSE D I, SINGH G. A critical review on inhibition of anaerobic digestion process by excess ammonia[J]. Bioresource Technology, 2013, 143:632-641
    [19] MUYZER G, SMALLA K. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology[J]. Antonie van Leeuwenhoek, 1998, 73(1):127-141
    [20] GARCIA-PENA E I, PARAMESWARAN P, KANG D W, et al. Anaerobic digestion and co-digestion processes of vegetable and fruit residues:Process and microbial ecology[J]. Bioresource Technology, 2011, 102(20):9447-9455
  • 加载中
计量
  • 文章访问数:  1362
  • HTML全文浏览数:  1090
  • PDF下载数:  213
  • 施引文献:  0
出版历程
  • 收稿日期:  2017-04-18
  • 刊出日期:  2017-11-15

酸化相发酵类型对甲烷相产甲烷性能的影响

  • 1.  北京化工大学资源与环境研究中心, 北京 100029
  • 2.  国峰清源生物能源有限责任公司, 北京 100020
基金项目:

国家科技支撑计划(2014BAC24B01,2014BAL05B03,2015BAD21B03)

摘要: 以餐厨垃圾和稻草为原料,通过调节酸化相的pH、氧化还原电位(ORP)和进料负荷(OLR),对酸化相的产酸发酵类型和不同酸化类型的产甲烷性能进行了研究。结果表明:当酸化相的pH 5.5时,发酵类型为丁酸型发酵;在乙醇型发酵和丁酸型发酵相互转换的过程中,会出现混合型发酵。从酸化效果方面来看,丁酸型发酵的产酸性能最优,酸化度为36%。同时,丁酸型发酵酸化产物的产甲烷性能最好,累计甲烷产率为535 mL·g-1 VS。通过PCR-DGGE的微生物菌群鉴定结果可知,在两相厌氧消化过程中,酸化相中的优势菌种主要以拟杆菌属(Bacteroidetes)和乳酸杆菌属(Lactobacillus)为主,甲烷相中的优势菌种以乳酸杆菌属(Lactobacillus)为主。

English Abstract

参考文献 (20)

目录

/

返回文章
返回