低温真空蒸发处理垃圾渗滤液膜浓缩液
Treatment of landfill leachate concentrate by low temperature vacuum evaporation
-
摘要: 采用纳滤(NF)和反渗透(RO)工艺处理垃圾渗滤液会产生污染物浓度极高的膜浓缩液。膜浓缩液是一种有毒有害的高浓度有机废水,可生化性差、极难处理,需要选择一种经济有效的浓缩液处理技术。采用低温真空蒸发方法,对膜浓缩液进行蒸发处理。在膜浓缩液水质特征分析的基础上,通过改变膜浓缩液的pH、蒸发温度和蒸发率,分析冷凝液中的COD、NH3-N、TDS和pH的变化规律。结果表明:1)膜浓缩液初始pH对冷凝液中COD和NH3-N有较大影响。酸性条件下,冷凝液中COD的浓度相对较高,而NH3-N的含量很低;碱性条件下,冷凝液中COD的浓度很低,而NH3-N的含量较高;2) 随着蒸发温度的升高,冷凝液的pH、TDS和NH3-N增加,在70 ℃达到最大值,继而下降。冷凝液中UV254随着蒸发温度的升高而增加,COD随着蒸发温度的升高而减少;3)在蒸发初期,冷凝液中TDS与NH3-N含量较高,进一步提高蒸发率,TDS与NH3-N含量有所降低,至蒸发后期,两者含量略有上升;4)冷凝液中TDS主要来自蒸发进入冷凝液的NH3-N,冷凝液的TDS 浓度与 NH3-N 浓度密切相关。本研究有利于拓宽浓缩液处理的途径,为实际应用蒸发处理技术提供有益指导。Abstract: Landfill leachate treatment by nanofiltration or reverse osmosis produces membrane filtration concentrate which contains high concentration of pollutants. An effective and economic concentrate treatment process is necessary because landfill leachate concentrate is a toxic pollutant with high concentration of organic matter and poor biochemical degradation, which is very difficult to deal with. In this paper, low temperature vacuum evaporation process was used to investigate the treatment of membrane filtration concentrate. Based on the analysis of the characteristics of the landfill leachate concentrate, the effect of some parameters such as pH, temperature, and evaporation rate on the change of condensate was investigated. Experimental results show that, 1) the initial pH of membrane filtration concentrate had a significant effect on the COD and NH3-N of condensate liquid. In acidic conditions, COD concentration of the condensate is very high, but the content of NH3-N is very low. In alkaline conditions, COD concentration is very low, but NH3-N content is higher. 2) pH, TDS, and ammonia nitrogen of the condensate increased with the increase of operating temperature and reached the highest level at 70℃ and reduced when further increased the evaporation temperature. UV254 of condensate increased with the increment of temperature. However, COD of the condensate decreased with the increase of temperature. 3) TDS and NH3-N of the condensate were high in the early evaporation stage and significantly reduced in the middle evaporation stage with increasing evaporate rate. When further increased the evaporation rate, TDS and NH3-N were slightly raised in the last stage. 4) TDS of the condensate mainly came from ammonia by evaporating into the condensate and then TDS concentration is closely related to the concentration of NH3-N. This study can broaden the handling method of membrane filtration concentrate, and provide a useful guidance for practical application of low temperature vacuum evaporation method.
-
Key words:
- landfill leachate /
- membrane filtration concentrate /
- evaporation /
- condensate
-
[1] 崔锋, 倪晋仁, 郭金成, 等. 新标准下卫生填埋场垃圾渗滤液的处理对策[J]. 中国给水排水, 2011, 27(6):47-50 [2] 郑可, 周少奇, 沙爽, 等. 臭氧氧化反渗透浓缩垃圾渗滤液动力学[J]. 环境科学, 2011, 32(10):2966-2970 [3] 刘研萍, 李秀金, 王宝贞, 等. 渗滤液的反渗透浓缩液回灌研究[J]. 环境工程, 2008, 26(4):89-93 [4] 蒋宝军, 李俊生, 杨威, 等. 垃圾渗滤液反渗透浓缩液回灌处理中试研究[J]. 哈尔滨商业大学学报(自然科学版), 2006, 22(6):36-40 [5] CALABRO P S, SBAFFONI S, ORSI S, et al.The landfill reinjection of concentrated leachate:findings from a monitoring study at an Italian site[J]. Journal of Hazardous Materials, 2010, 181(1/2/3):962-968 [6] 王冬梅, 刘丹, 刘庆梅, 等. 渗滤液反渗透浓缩液回灌出水水质变化规律的研究[J]. 环境科学, 2014, 35(7):2822-2828 [7] AMIRI A, SABOUR M R. Multi-response optimization of Fenton process for applicability assessment in landfill leachate treatment[J]. Waste Management, 2014, 34(12):2528-2536 [8] GAO J, OLOIBIRI V, CHYS M, et al. The present status of landfill leachate treatment and its development trend from a technological point of view[J]. Reviews in Environmental Science and Bio/Technology, 2015, 14(1):1-30 [9] 范雪曼, 秦侠, 张丽.物化法深度处理渗滤液及DOM荧光分析[J].水处理技术, 2013,39(7):92-95 [10] 岳东北, 刘建国, 聂永丰, 等. 蒸发法深度处理浓缩渗滤液的实验研究[J]. 环境科学动态,2005(1):44-45 [11] 张跃春, 黄军, 李海渊, 等. 垃圾渗滤液膜滤浓缩液处理技术综述与发展方向[J]. 广州化工, 2016, 44(7):38-39 [12] 李星, 程振杰, 杨艳, 等. 采用直接蒸发法处理垃圾渗滤液试验研究[J]. 北京工业大学学报, 2014, 40(1):115-120 [13] ZHANG Q Q, TIAN B H, ZHANG X, et al. Investigation on characteristics of leachate and concentrated leachate in three landfill leachate treatment plants[J]. Waste Management, 2013, 33(11):2277-2286 [14] 邵立明, 何品晶, 康瑾. pH和负压对生活垃圾焚烧厂渗沥液蒸发处理的影响[J]. 环境工程学报, 2007, 1(2):108-111 [15] 程治良, 全学军, 陈波, 等. 生活垃圾焚烧发电厂渗滤液蒸发浓缩处理[J]. 环境工程学报, 2012, 6(10):3645-3650 [16] 蒋绍阶, 刘宗源. UV254作为水处理中有机物控制指标的意义[J]. 重庆建筑大学学报, 2002, 24(2):61-65 [17] 杨世迎, 张文义, 单良, 等. 垃圾渗滤液COD检测方法中Cl-干扰问题的讨论[J]. 环境科学, 2010, 31(4):1014-1020 [18] 程振杰. 蒸发法处理垃圾渗滤液试验研究[D]. 北京:北京工业大学, 2013 期刊类型引用(12)
1. 孙素玲. 垃圾渗滤液膜浓缩液蒸发实验及科学处理方法. 粘接. 2024(05): 106-108+112 . 百度学术
2. 李红,汪致成,黄昭玮,冷超群,吴德明,周涛. 老龄垃圾渗滤液蒸发及产水芬顿氧化处理研究. 工业用水与废水. 2024(05): 32-37 . 百度学术
3. 沈哲,陆峰,徐准备,陈思,张乐. 低温蒸发技术在工业废液处理中应用现状及发展趋势. 应用化工. 2022(08): 2400-2405 . 百度学术
4. 戚二兵,黄亚继,袁琦,胡华军,樊聪慧,丁守一. 接触式蒸发处理垃圾渗滤液膜浓缩液试验研究. 工业水处理. 2021(02): 38-42 . 百度学术
5. 周文兵,武林,肖乃东,杜德利,张会敏. 基于太阳能加热的沼液负压蒸发浓缩研究. 太阳能学报. 2021(03): 154-163 . 百度学术
6. 徐世昌,崔兰英,解利昕,宿立波. 蒸发气相吸收耦合方法处理垃圾渗滤液. 化工进展. 2021(05): 2852-2858 . 百度学术
7. 陶海祥,毛兵,江海云,吴小亮. Ru/TiO_2湿式催化氧化降解垃圾渗滤液膜浓缩液. 工业水处理. 2021(09): 111-116 . 百度学术
8. 张慧晨,张良,李颐菲,谢雨星. 陶瓷切削废液低温低压蒸发过程实验研究. 中国新技术新产品. 2021(15): 4-6 . 百度学术
9. 朱晓萍,池浩然,金佳惠,陈爽,金茜. 有机硅消泡剂在垃圾渗滤液处理中的应用. 有机硅材料. 2021(06): 54-57 . 百度学术
10. 赵贤广,杨世慧,邱明建,郭智. 负压蒸发-吹脱组合新技术处理垃圾沥滤液高浓度氨氮实验研究. 现代化工. 2020(02): 187-190+195 . 百度学术
11. 戚二兵,黄亚继,袁琦,胡华军,樊聪慧,曹彦彦,丁守一. 石灰混凝-浸没蒸发协同处理垃圾渗滤液纳滤膜浓缩液. 环境工程. 2020(12): 54-58+77 . 百度学术
12. 夏珺,蔡一地,张俊丰,黄妍. 高温烟气蒸发垃圾渗滤液膜浓缩液的挥发性有机物. 化工进展. 2019(05): 2485-2490 . 百度学术
其他类型引用(14)
-

计量
- 文章访问数: 3094
- HTML全文浏览数: 2633
- PDF下载数: 510
- 施引文献: 26