类水滑石衍生金属混合氧化物在汽车尾气NOx存储/还原催化剂中的应用

王强, 薛天山, 杨若研, 高艳珊. 类水滑石衍生金属混合氧化物在汽车尾气NOx存储/还原催化剂中的应用[J]. 环境工程学报, 2017, 11(3): 1305-1313. doi: 10.12030/j.cjee.201609238
引用本文: 王强, 薛天山, 杨若研, 高艳珊. 类水滑石衍生金属混合氧化物在汽车尾气NOx存储/还原催化剂中的应用[J]. 环境工程学报, 2017, 11(3): 1305-1313. doi: 10.12030/j.cjee.201609238
WANG Qiang, XUE Tianshan, YANG Ruoyan, GAO Yanshan. Application of hydrotalcite-like compounds derived mixed oxides as NOx storage and reduction catalysts for vehicle NOx emission control[J]. Chinese Journal of Environmental Engineering, 2017, 11(3): 1305-1313. doi: 10.12030/j.cjee.201609238
Citation: WANG Qiang, XUE Tianshan, YANG Ruoyan, GAO Yanshan. Application of hydrotalcite-like compounds derived mixed oxides as NOx storage and reduction catalysts for vehicle NOx emission control[J]. Chinese Journal of Environmental Engineering, 2017, 11(3): 1305-1313. doi: 10.12030/j.cjee.201609238

类水滑石衍生金属混合氧化物在汽车尾气NOx存储/还原催化剂中的应用

  • 基金项目:

    国家自然科学基金优秀青年项目(51622801)

  • 中图分类号: X701

Application of hydrotalcite-like compounds derived mixed oxides as NOx storage and reduction catalysts for vehicle NOx emission control

  • Fund Project:
  • 摘要: 汽车尾气NOx污染物的排放,不仅是造成城市灰霾和光化学烟雾污染的重要原因,而且对人体健康危害极大。类水滑石衍生NSR催化剂体系由于其优越的NOx存储性能、热稳定性和抗硫性等特点受到广泛关注。为促进该技术的研究及应用,综述了类水滑石类催化剂应用于NSR技术的原理及研究成果,重点总结了化学组成、碱金属负载、贵金属负载、煅烧温度等因素对NOx存储还原性能的影响,指出了类水滑石类催化剂应用于NSR技术中存在的问题及发展方向。
  • 加载中
  • [1] WANG Q, PARK S, DUAN L, et al. Activity, stability and characterization of NO oxidation catalyst Co/KxTi2O5[J]. Applied Catalysis B Environmental, 2008, 85(1):10-16
    [2] LI S, LI S, WU C, et al. Characterization and properties of Pt/ZrO2CeO2 catalyst for purification of automotive exhaust[J]. Chinese Journal of Catalysis, 1999, 20(1):542-560
    [3] WANG Q, PARK S, JIN S, et al. Co/KxTi2O5 catalysts prepared by ion exchange method for NO oxidation to NO2[J]. Applied Catalysis B Environmental, 2008, 79(2):101-107
    [4] 谭镜明. 汽车尾气三效催化剂简介[J]. 广州环境科学, 2007, 22(1):20-21
    [5] XUE H, LI G, LIU P, et al. Review of catalysts for selective catalytic reduction(SCR) of NOx[J]. Advanced Materials Research, 2012, 550-553:119-123
    [6] NAKATSUJI T, YASUKAWA R, TABATA K, et al. A highly durable catalytic NOx reduction in the presence of SOx using periodic two steps, an operation in oxidizing conditions and a relatively short operation in reducing conditions[J]. Applied Catalysis B Environmental, 1999, 21(2):121-131
    [7] TAKAHASHI N, SHINJOH H, IIJIMA T, et al. The new concept 3-way catalyst for automotive lean-burn engine:NOx storage and reduction catalyst[J]. Catalysis Today, 1996, 27(1/2):63-69
    [8] 郭丽红, 刘咏, 孟明. 稀燃NOx储存-还原催化剂[J]. 化学进展, 2009, 21(5):964-970
    [9] AMBERNTSSON A, FRIDELL E, SKOGLUNDH M. Influence of platinum and rhodium composition on the NOx storage and sulphur tolerance of a barium based NOx storage catalyst[J]. Applied Catalysis B Environmental, 2003, 46(3):429-439
    [10] PIETA I, GARCIA-DIEGUEZ M, HERRERA C, et al. In situ DRIFTTRM study of simultaneous NOx and soot removal over Pt-Ba and Pt-K NSR catalysts[J]. Journal of Catalysis, 2010, 270(2):256-267
    [11] DIWELL A, RAJARAM R, SHAW H, et al. The role of ceria in three-way catalysts[J]. Studies in Surface Science & Catalysis, 1991, 71:139-152
    [12] HATANAKA M, TAKAHASHI N, TANAB T, et al. Ideal Pt loading for a Pt/CeO2-based catalyst stabilized by a Pt-O-Ce bond[J]. Applied Catalysis B Environmental, 2010, 99(1/2):336-342
    [13] ITO K, KAKINO S, IKEUE K, et al. NO adsorption/desorption property of TiO2-ZrO2 having tolerance to SO2 poisoning[J]. Applied Catalysis B Environmental, 2007, 74(1/2):137-143
    [14] CORBOS E, DUPREZ D, COURTOIS X, et al. Impact of support oxide and Ba loading on the NOx storage properties of Pt/Ba/support catalysts:CO2 and H2O effects[J]. Applied Catalysis B Environmental, 2007, 76(3/4):357-367
    [15] LI X, CHEN J, LIN P, et al. A study of the NOx storage catalyst of Ba-Fe-O complex oxide[J]. Catalysis Communications, 2004, 5(1):25-28
    [16] MILT V, QUERINI C, MIRO E. Thermal analysis of Kx/La2O3, active catalysts for the abatement of diesel exhaust contaminants[J]. Thermochimica Acta, 2011, 125(1):145-156
    [17] CASAPU M, GRUNWALDT J, MACIEJEWSKI M, et al. Comparative study of structural properties and NOx storage-reduction behavior of Pt/Ba/CeO2 and Pt/Ba/Al2O3[J]. Applied Catalysis B Environmental, 2008, 78(3/4):288-300
    [18] 王立秋, 张守臣,刘长厚. 类水滑石复合产物催化消除氮氧化物的研究进展[J]. 化工进展, 2003, 22(10):1076-1080
    [19] HE L, HUANG Y, WANG A, et al. Surface modification of Ni/Al2O3 with Pt:Highly efficient catalysts for H2 generation via selective decomposition of hydrous hydrazine[J]. Journal of Catalysis, 2013, 298(1):1-9
    [20] WANG Q, DERMOT O. Recent advances in the synthesis and application of layered double hydroxide(LDH) nanosheets[J]. Chemical Reviews, 2012, 112(7):4124-4155
    [21] WANG Q, TAY H, WEI NG D, et al. The effect of trivalent cations on the performance of Mg-M-CO3 layered double hydroxides for high-temperature CO2 capture[J]. ChemSusChem, 2010, 3(8):965-973
    [22] WANG Q, TAY H, CHEN L, et al. Preparation and CO2 capture capacity of alkali metal carbonates promoted hydrotalcite[J]. Journal of Nanoengineering & Nanomanufacturing, 2011, 1(3):298-303
    [23] WANG Q, HUI H, GUO Z, et al. Morphology and composition controllable synthesis of Mg-Al-CO3 hydrotalcites by tuning the synthesis pH and the CO2 capture capacity[J]. Applied Clay Science, 2012, 55(1):18-26
    [24] WANG Q, LUO J, ZHONG Z, et al. CO2 Capture by solid-adsorbents and their applications:Current status and new trends[J]. Energy & Environmental Science, 2011, 4(1):42-55
    [25] ZHENG H, WANG Q, LONG Y, et al. Enhancing the luminescence of carbon dots with a reduction pathway[J]. Chemical Communications, 2011, 47(38):10650-10652
    [26] LIETTI L, FORZATTI P, NOVA I, et al. NOx storage reduction over Pt-Ba/gamma-Al2O3 catalyst[J]. Journal of Catalysis, 2001, 204(1):175-191
    [27] LIM S, ZHENG Y, ZOU S, et al. Uptake of arsenate by an alginate-encapsulated magnetic sorbent:Process performance and characterization of adsorption chemistry[J]. Journal of Colloid & Interface Science, 2009, 333(1):33-39
    [28] YU J, CHENG J, MA C, et al. NOx decomposition, storage and reduction over novel mixed oxide catalysts derived from hydrotalcite-like compounds[J]. Journal of Colloid & Interface Science, 2009, 333(2):423-430
    [29] FORNASARI G, TRIFIRO F, VACCARI A, et al. Novel low temperature NOx storage-reduction catalysts for diesel light-duty engine emissions based on hydrotalcite compounds[J]. Catalysis Today, 2002, 75(1/2/3/4):421-429
    [30] CENTI G, ARENA G, PERATHONER S. Nanostructured catalysts for NOx storage-reduction and N2O decomposition[J]. Journal of Catalysis, 2003, 216(1/2):443-454
    [31] KANG S, LI J, FU L, et al. NOx storage and decomposition behavior of Cu-Mg-Al catalyst[J]. Environmental Science, 2007, 28(5):958-962
    [32] 於俊杰, 朱玲, 周波, 等. Zn取代类水滑石衍生复合氧化物上N2O的催化分解[J]. 物理化学学报, 2009, 25(2):353-359
    [33] LI D, YU J, HAO Z, et al. Novel Ru-Mg-Al-O catalyst derived from hydrotalcite-like compound for NO storage/decomposition/reduction[J]. Journal of Physical Chemistry C, 2007, 111(28):10552-10559
    [34] LU P, ZHANG X, WANG Z, et al. Hydrotalcites-derived well-dispersed mixed oxides for NOx adsorption and desorption[J]. Science of Advanced Materials, 2016, 8(8):1656-1667
    [35] YU J, XIAO P, YAN X, et al. Effective NOx decomposition and storage/reduction over mixed oxides derived from layered double hydroxides[J]. Industrial & Engineering Chemistry Research, 2007, 46(17):5794-5797
    [36] YU J, CHENG J, MA C, et al. NOx decomposition, storage and reduction over novel mixed oxide catalysts derived from hydrotalcite-like compounds[J]. Journal of Colloid & Interface Science, 2009, 333(2):423-430
    [37] WANG Z, LU P, ZHANG X, et al. NO storage and soot combustion over well-dispersed mesoporous mixed oxides via hydrotalcite-like precursors[J]. RSC Advances, 2015, 5(65):52743-52753
    [38] LI Q, MENG M, TSUBAKI N, et al. Performance of K-promoted hydrotalcite-derived CoMgAlO catalysts used for soot combustion, NOx storage and simultaneous soot-NOx removal[J]. Applied Catalysis B Environmental, 2009, 91(1):406-415
    [39] WALSPURGER S, BOELS L, PAUL D, et al. The crucial role of the K+-aluminium oxide interaction in K+-promoted alumina- and hydrotalcite-based materials for CO2 sorption at high temperatures[J]. ChemSusChem, 2008, 1(7):643-650
    [40] WANG Y, HAN X, JI A, et al. Basicity of potassium-salt modified hydrotalcite studied by 1 H MAS NMR using pyrrole as a probe molecule[J]. Microporous & Mesoporous Materials, 2005, 77(2):139-145
    [41] 张业新, 苏庆运, 王仲鹏, 等. 钾对镁铝水滑石复合氧化物的表面改性[J]. 物理化学学报, 2010, 26(4):921-926
    [42] LI Q, MENG M, DAI F, et al. Multifunctional hydrotalcite-derived K/MnMgAlO catalysts used for soot combustion, NOx storage and simultaneous soot-NOx removal[J]. Chemical Engineering Journal, 2012, 184(2):106-112
    [43] CENTI G, FORNASARI G, GOBBI C, et al. NOx storage-reduction catalysts based on hydrotalcite:Effect of Cu in promoting resistance to deactivation[J]. Catalysis Today, 2002, 73(3):287-296
    [44] SILLETTI B, ADAMS R, SIGMON S, et al. A novel Pd/MgAlOx catalyst for NOx storage-reduction[J]. Catalysis Today, 2006, 114(1):64-71
    [45] ZHANG Y, WANG X, WANG Z, et al. Direct spectroscopic evidence of CO spillover and subsequent reaction with preadsorbed NOx on Pd and K cosupported Mg-Al mixed oxides[J]. Environmental Science & Technology, 2012, 46(17):9614-9619
    [46] 康守方, 蒋政, 郝郑平. Cu对Pt/Cu-Mg-Al-O催化剂上NOx储存性能的影响[J]. 物理化学学报, 2005, 21(3):278-282
    [47] WANG T, ZHEN L, YANG S, et al. Ag/Mg-Al-O composite for low temperature NOx storage[J]. Chemical Research in Chinese Universities, 2011, 27(5):734-738
    [48] MEI X, WANG J, YANG R, et al. Synthesis of Pt doped Mg-Al layered double oxide/graphene oxide hybrid as novel NOx storage-reduction catalyst[J]. RSC Advances, 2015, 5(49):437-441
    [49] ZHANG S, LIU W, WANG C, et al. Improving the NOx decomposition and storage activity through co-incorporating ammonium and copper ions into Mg/Al hydrotalcites[J]. RSC Advances, 2016, 6(51):45127-45134
  • 加载中
计量
  • 文章访问数:  2873
  • HTML全文浏览数:  2120
  • PDF下载数:  641
  • 施引文献:  0
出版历程
  • 收稿日期:  2016-12-14
  • 刊出日期:  2017-03-10

类水滑石衍生金属混合氧化物在汽车尾气NOx存储/还原催化剂中的应用

  • 1. 北京林业大学环境科学与工程学院, 北京 100083
基金项目:

国家自然科学基金优秀青年项目(51622801)

摘要: 汽车尾气NOx污染物的排放,不仅是造成城市灰霾和光化学烟雾污染的重要原因,而且对人体健康危害极大。类水滑石衍生NSR催化剂体系由于其优越的NOx存储性能、热稳定性和抗硫性等特点受到广泛关注。为促进该技术的研究及应用,综述了类水滑石类催化剂应用于NSR技术的原理及研究成果,重点总结了化学组成、碱金属负载、贵金属负载、煅烧温度等因素对NOx存储还原性能的影响,指出了类水滑石类催化剂应用于NSR技术中存在的问题及发展方向。

English Abstract

参考文献 (49)

目录

/

返回文章
返回