Ag@SiO2核壳粒子SERS快速检测辛基酚

蔡盼盼, 李萍, 钟敏. Ag@SiO2核壳粒子SERS快速检测辛基酚[J]. 环境工程学报, 2016, 10(10): 5579-5585. doi: 10.12030/j.cjee.201512168
引用本文: 蔡盼盼, 李萍, 钟敏. Ag@SiO2核壳粒子SERS快速检测辛基酚[J]. 环境工程学报, 2016, 10(10): 5579-5585. doi: 10.12030/j.cjee.201512168
CAI Panpan, LI Ping, ZHONG Min. Rapid detection of octylphenol based the SERS of core-shell Ag@SiO2 nanoparticles[J]. Chinese Journal of Environmental Engineering, 2016, 10(10): 5579-5585. doi: 10.12030/j.cjee.201512168
Citation: CAI Panpan, LI Ping, ZHONG Min. Rapid detection of octylphenol based the SERS of core-shell Ag@SiO2 nanoparticles[J]. Chinese Journal of Environmental Engineering, 2016, 10(10): 5579-5585. doi: 10.12030/j.cjee.201512168

Ag@SiO2核壳粒子SERS快速检测辛基酚

  • 基金项目:

    广东省科技计划项目(2014A020216043)

  • 中图分类号: X703.1

Rapid detection of octylphenol based the SERS of core-shell Ag@SiO2 nanoparticles

  • Fund Project:
  • 摘要: 以Ag@SiO2核壳粒子为基底,利用表面增强拉曼光谱(SERS)技术实现酚类内分泌干扰物的快速检测。采用柠檬酸钠还原硝酸银制得银纳米粒子,以正硅酸乙酯为硅源,在银纳米颗粒表面包裹不同厚度的SiO2得到Ag@SiO2核壳粒子。通过透射电镜、紫外光谱、X射线衍射等表征手段对Ag@SiO2核壳粒子进行了表征和分析。以辛基酚为探针研究Ag@SiO2粒子表面增强拉曼效应与SiO2厚度、核壳粒子浓度的关系及辛基酚的检测限,并以此法检测实际环境样品中辛基酚的含量。结果表明,辛基酚的表面增强拉曼效应随着Ag@SiO2壳厚的增加而减弱,随着辛基酚浓度的增大而增强,且在1 390 cm-1处的峰强信息与浓度有着良好的线性关系,辛基酚最低检测限浓度为1 μg·L-1,可以实现辛基酚的SERS检测。
  • 加载中
  • [1] ALI M.S.,RAFIUDDIN S.,GHORI M.,et al.Simultaneous determination of paracetamol,chlorzoxazone,and related impurities 4-aminophenol,4-chloroacetanilide,and p-chlorophenol in pharmaceutical preparations by high-performance liquid chromatography.Journal of AOAC International,2007,90(1):82-93
    [2] CAI Yaqi,CAI Yu'e,MOU Shifen,et al.Multi-walled carbon nanotubes as a solid-phase extraction adsorbent for the determination of chlorophenols in environmental water samples.Journal of Chromatography A,2005,1081(2):245-247
    [3] STOICHEV T.,BAPTISTA M.S.,BASTO M.C.P.,et al.Application of SPME to the determination of alkylphenols and bisphenol A in cyanobacteria culture media.Analytical and Bioanalytical Chemistry,2008,391(1):425-432
    [4] SHIN H.S.,PARK C.H.,PARK S.J.,et al.Sensitive determination of bisphenol A in environmental water by gas chromatography with nitrogen-phosphorus detection after cyanomethylation.Journal of Chromatography A,2001,912(1):119-125
    [5] ISHII R.,HORIE M.Analysis of chlorophenol compounds contaminating food by LC/MS.Journal of the Food Hygienic Society of Japan (Shokuhin eiseigaku Zasshi),2008,49(5):356-360
    [6] JEANNOT R.,SABIK H.,SAUVARD E.,et al.Determination of endocrine-disrupting compounds in environmental samples using gas and liquid chromatography with mass spectrometry.Journal of Chromatography A,2002,974(1/2):143-159
    [7] SUN Yang,TANG Chunlan,WU Xiaowen,et al.Characterization of alkylphenol components in Ginkgo biloba sarcotesta by thermochemolysis-gas chromatography/mass spectrometry in the presence of trimethylsulfonium hydroxide.Chromatographia,2012,75(7/8):387-395
    [8] PADILLA-SÁNCHEZ J.A.,PLAZA-BOLAÑOS P.,ROMERO-GONZÁLEZ R.,et al.Simultaneous analysis of chlorophenols,alkylphenols,nitrophenols and cresols in wastewater effluents,using solid phase extraction and further determination by gas chromatography-tandem mass spectrometry.Talanta,2011,85(5):2397-2404
    [9] FLEISCHMANN M.,HENDRA P.J.,MCQUILLAN A.J.Raman spectra of pyridine adsorbed at a silver electrode.Chemical Physics Letters,1974,26(2):163-166
    [10] NIE Shuming,EMORY S. R.Probing single molecules and single nanoparticles by surface-enhanced Raman scattering.Science,1997,275(5303):1102-1106
    [11] 刘秀敏,方萍萍,吴元菲,等.对巯基苯胺分子构象和拉曼光谱的密度泛函理论研究.光散射学报,2007,19(4):304-310 LIU Xiumin,FANG Pingping,WU Yuanfei,et al.Theoretical study of conformations and Raman spectra of p-aminothiophenol.The Journal of Light Scattering,2007,19(4):304-310(in Chinese)
    [12] 李永玉,彭彦昆,孙云云,等.拉曼光谱技术检测苹果表面残留的敌百虫农药.食品安全质量检测学报,2012,3(6):672-675 LI Yongyu,PENG Yankun,SUN Yunyun,et al.Detection of trichlorfon pesticide on apple' surface based on Raman spectroscopy.Journal of Food Safety & Quality,2012,3(6):672-675(in Chinese)
    [13] 张涛,李战海,李炎,等.非法食品添加剂乌洛托品的拉曼光谱及DFT分析方法.检验检疫学刊,2013,23(2):36-37 ZHANG Tao,LI Zhanhai,LI Yan,et al.A combined Raman and DFT study of illegal food additives methenamine.Journal of Inspection and Quarantine,2013,23(2):36-37(in Chinese)
    [14] FLORES J.C.,TORRES V.,POPA M.,et al.Variations in morphologies of silver nanoshells on silica spheres.Colloids and Surfaces A:Physicochemical and Engineering Aspects,2008,330(1):86-90
    [15] 黄震,唐建国,王蕊,等.SiO2/稀土Eu(Ⅲ)配合物核-壳复合粒子的制备及发光性能研究.材料导报B,2011,25(3):16-19 HUANG Zhen,TANG Jianguo,WANG Rui,et al.Preparation and spectroscopic properties of ternary complex of europium and coated SiO2 core-shell Nano-particles.Materials Review B,2011,25(3):16-19(in Chinese)
    [16] WANG Tingting,FANG Chai,WANG Chungang,et al.Fluorescent hollow/rattle-type mesoporous Au@SiO2 nanocapsules for drug delivery and fluorescence imaging of cancer cells.Journal of Colloid and Interface Science,2011,358(1):109-115
    [17] ZHANG Yongxia,MANDENG L.N.,BONDRE N.,et al.Metal-enhanced fluorescence from silver-SiO2-silver nanoburger structures.Langmuir,2010,26(14):12371-12376
    [18] 王蕊,唐建国,王瑶,等.Ag@SiO2纳米颗粒的制备和光谱性能研究.材料导报,2010,24(6):9-12 WANG Rui,TANG Jianguo,WANG Yao,et al.Study on preparation of Ag@SiO2 nanoparticles and its optical properties.Materials Review,2010,24(6):9-12(in Chinese)
    [19] KONG Xianming,YU Qian,ZHANG Xianfeng,et al.Synthesis and application of surface enhanced Raman scattering (SERS) tags of Ag@SiO2 core/shell nanoparticles in protein detection.Journal of Materials Chemistry,2012,22(16):7767-7774
    [20] WU Chuanliu,XU Qinghua.Stable and functionable mesoporous silica-coated gold nanorods as sensitive localized surface plasmon resonance (LSPR) nanosensors.Langmuir,2009,25(16):9441-9446
    [21] LI Jianfeng,HUANG Yifan,DING Yong,et al.Shell-isolated nanoparticle-enhanced Raman spectroscopy.Nature,2010,464(7287):392-395
    [22] LEE P.C.,MEISEL D.Adsorption and surface-enhanced Raman of dyes on silver and gold sols.The Journal of Physical Chemistry,1982,86(17):3391-3395
    [23] STÖBER W.,FINK A.,BOHN E.Controlled growth of monodisperse silica spheres in the micron size range.Journal of Colloid and Interface Science,1968,26(1):62-69
    [24] KOVTYUKHOVA N.I.,BUZANEVA E.V.,WARAKSA C.C.,et al.Surface sol-gel synthesis of ultrathin semiconductor films.Chemistry of Materials,2000,12(2):383-389
    [25] LI Jianfeng,HUANG Yifan,DING Yong,et al.Shell-isolated nanoparticle-enhanced Raman spectroscopy.Nature,2010,464(7287):392-395
    [26] SHIH H.K.,SHU T.Y.,PONNUSAMY V.K.,et al.A novel fatty-acid-based in-tube dispersive liquid-liquid microextraction technique for the rapid determination of nonylphenol and 4-tert-octylphenol in aqueous samples using high-performance liquid chromatography-ultraviolet detection.Analytica Chimica Acta,2015,854:70-77
    [27] ZHENG Qiaoli,YANG Ping,XU He,et al.A simple and sensitive method for the determination of 4-n-octylphenol based on multi-walled carbon nanotubes modified glassy carbon electrode.Journal of Environmental Sciences,2012,24(9):1717-1722
  • 加载中
计量
  • 文章访问数:  1592
  • HTML全文浏览数:  1108
  • PDF下载数:  436
  • 施引文献:  0
出版历程
  • 收稿日期:  2016-02-21
  • 刊出日期:  2016-10-20

Ag@SiO2核壳粒子SERS快速检测辛基酚

  • 1. 广东工业大学环境科学与工程学院, 广州 510006
基金项目:

广东省科技计划项目(2014A020216043)

摘要: 以Ag@SiO2核壳粒子为基底,利用表面增强拉曼光谱(SERS)技术实现酚类内分泌干扰物的快速检测。采用柠檬酸钠还原硝酸银制得银纳米粒子,以正硅酸乙酯为硅源,在银纳米颗粒表面包裹不同厚度的SiO2得到Ag@SiO2核壳粒子。通过透射电镜、紫外光谱、X射线衍射等表征手段对Ag@SiO2核壳粒子进行了表征和分析。以辛基酚为探针研究Ag@SiO2粒子表面增强拉曼效应与SiO2厚度、核壳粒子浓度的关系及辛基酚的检测限,并以此法检测实际环境样品中辛基酚的含量。结果表明,辛基酚的表面增强拉曼效应随着Ag@SiO2壳厚的增加而减弱,随着辛基酚浓度的增大而增强,且在1 390 cm-1处的峰强信息与浓度有着良好的线性关系,辛基酚最低检测限浓度为1 μg·L-1,可以实现辛基酚的SERS检测。

English Abstract

参考文献 (27)

目录

/

返回文章
返回