屋顶绿化系统处理稳定化黑水
Treatment of pretreated toilet flushing water by green roof system
-
摘要: 为了优化屋顶绿化系统处理稳定化黑水的工艺条件,以填料种类(A)、填料添加量(B)、植物种类(C)、土层厚度(D)为实验因素,设计了正交实验并研究了不同工艺条件下模拟装置对经过生物滤池稳定化处理后黑水的处理效果。结果表明,对NH4+-N去除率影响因素的主次顺序为A > D > C > B,对TN、TP去除率影响因素的主次顺序为A > D > B > C,对COD去除率影响因素的主次顺序为D > A > B > C。综合各污染物去除效果,得出较优的实验方案选用添加20%的柱状颗粒活性炭与泥炭土混合填料,土层厚度为20 cm,种植植物为黄秋葵。在实验进水氨氮、总氮、总磷及COD的平均浓度为76.85、88.71、14.83和167.15 m·L-1的条件下,不同正交实验装置的平均去除率可分别达到56.53%~87.30%、20.43%~46.91%、20.43%~83.11%和23.42%~52.36%。Abstract: To study the technological conditions for the treatment of the pretreated toilet flushing water by green roof systems,an orthogonal test was designed and different experimental installations were set up to study the treatment of trickling filter pretreated toilet flushing water. 4 factors were selected for the orthogonal test,which were lightweight filler (A),additional amount of filler (B),plant species (C)and thickness of soil (D). Results show that the optimal order of the 4 factors was A > D > C > B for NH4+-N removal efficiency,A > D > B > C for the removal efficiency of both TN and TP and D > A > B > C for COD removal efficiency. Considering the removal efficiency of every pollutant,suitable technology conditions were decided as follows:20% columnar activated carbon,80% peat soil,30 cm of soil thickness and planting of okra. While the average influent concentration of the test wastewater was 76.85,88.71,14.83 and 167.15 mg·L-1 for NH4+-N,TN,TP and COD, respectively,the average removal efficiency of each device was from 56.53% to 87.30%,20.43% to 46.91%,20.43% to 83.11% and 23.42% to 52.36%,respectively.
-
Key words:
- green roof system /
- toilet flushing water /
- treatment
-
[1] RASHIDI H, GHAFFARIANHOSEINI A, GhaffarianHoseini A, et al. Application of wastewater treatment in sustainable design of green built environments:A review[J]. Renewable and Sustainable Energy Reviews, 2015, 49:845-856 [2] DEVKOTA J, SCHLACHTER H, ANAND C, et al. Development and application of EEAST:A life cycle based model for use of harvested rainwater and composting toilets in buildings[J]. Journal of Environmental Management, 2013, 130:397-404 [3] 张荣祥. 分散建筑生活污水处理技术研究[J]. 山西建筑, 2009, 35(22):206-207 [4] 国家环境保护总局. 水和废水监测分析方法[M].4版.北京:中国环境科学出版社, 2002 [5] 唐登勇, 郑正, 林志荣, 等. 天然沸石吸附低浓度氨氮废水的研究[J]. 环境科学与技术, 2010, 33(12):206-209 [6] 胡曰利, 吴晓芙, 聂发辉. 天然蛭石对污水中氨氮吸附去除率的影响[J]. 中南林学院学报, 2004, 24(1):30-33 [7] 邓慧萍, 吴国荣, 张玉先. 沸石和活性炭除氨氮、有机物的互补作用[J]. 中国给水排水, 2004, 20(5):50-52 [8] STRAYER R F, LIN C J, ALEXANDER M. Effect of simulated acid rain on nitrification and nitrogen mineralization in forest soils[J]. Journal of Environmental Quality, 1981, 10(4):547-551 [9] CURTIN D, CAMPBELL C A, JALIL A. Effects of acidity on mineralization:pH-dependence of organic matter mineralization in weakly acidic soils[J]. Soil Biology and Biochemistry, 1998, 30(1):57-64 [10] ROBERTSON G P. Nitrification in forested ecosystems[J]. Philosophical Transactions of the Royal Society B:Biological Sciences, 1982, 296(1082):445-457 [11] PAPEN H, VONBERG R. A most probable number method (MPN)for the estimation of cell numbers of heterotrophic nitrifying bacteria in soil[J]. Plant and Soil, 1998, 199(1):123-130 [12] 金相灿, 贺凯, 卢少勇, 等. 4种填料对氨氮的吸附效果[J]. 湖泊科学, 2008, 20(6):755-760 [13] ANDERSON M A, RUBIN A J. 水溶液吸附化学[M]. 刘莲生, 译. 北京:科学出版社, 1989 [14] 丰楠. 吸附剂用量对二级出水中氨氮去除效果的研究[J]. 环境科学与管理, 2015, 40(6):104-107 [15] ZHU T, JENSSEN P D, MEHLUM T, et al. Phosphorus sorption and chemical characteristics of lightweight aggregates (LWA)-potential filter media in treatment wetlands[J]. Water Science and Technology, 1997, 35(5):103-108 [16] 罗明, 陈新红, 李兢, 等. 种保素对几种作物根际微生物效应的影响[J]. 生态学杂志, 2000, 19(3):69-72 期刊类型引用(2)
1. 李佳彬,李路瑶,刘雪,陈卓帛,宋婷婷,朱昌雄,耿兵. 异位发酵床处理农村厕所黑水的效果研究. 农业环境科学学报. 2021(09): 1998-2005 . 百度学术
2. 罗婷,许文年,程虎,严雨洁,张永波,梅书宇,夏栋. 粗放型绿色屋顶基质层对降雨出流水质影响. 环境工程. 2020(04): 39-45 . 百度学术
其他类型引用(0)
-

计量
- 文章访问数: 2337
- HTML全文浏览数: 1911
- PDF下载数: 408
- 施引文献: 2