二氧化钛滤柱对高砷污酸废水的吸附去除
Arsenite adsorption removal from acid wastewater using titanium dioxide adsorption filter column
-
摘要: 冶炼废水中高浓度砷的去除及回收是环境领域面临的一大挑战。提出利用颗粒TiO2填充滤柱对酸性废水中的高浓度砷进行连续在线吸附去除。经过3个连续串联的TiO2滤柱,原水中高达2.5 g·L-1的三价砷可降至国家工业废水排放标准以下(-1)。空床接触时间(EBCT)实验结果表明,当EBCT=20 min时滤柱中TiO2可达到最大利用率。使用后的TiO2颗粒可用H2SO4和NaOH进行反洗再生。X射线衍射分析结果表明,经过再生后颗粒TiO2的晶型并未发生变化,能够实现对砷的再吸附。基于同步辐射技术的微束X射线荧光(μ-XRF)分析结果表明,反洗后少量固体残渣中有多种重金属共存。砷的K边微束X射线近边吸收结构(μ-XANES)表明固体残渣中存在五价砷,说明反洗过程中三价砷部分氧化。固体残渣可以通过化学提纯的方式实现砷及多种共存重金属的回收。再生废液可与原酸性废水混合调pH至中性后重新进入滤柱进行吸附去除。提出的利用颗粒TiO2处理酸性冶炼废水的新方法可有效去除废水中的高浓度三价砷,吸附剂可重复利用,同时可以实现砷及其他重金属的回收,整个工艺流程几乎不产生废渣,对环境友好的同时可产生经济效益。Abstract: Remediation of metallurgical industry wastewater has presented a great environmental challenge for decades. In this study,a remediation technique for As(Ⅲ) adsorptive removal,adsorbent regeneration,and As(Ⅲ) recovery was proposed. Using three granular TiO2 columns in series, As(III) with initial concentration of 2.5 g·L-1 could be reduced to below the wastewater discharge limit of 0.5 mg·L-1. Optimization of the empty bed contact time (EBCT) suggested that a 20 min EBCT was sufficient for As(Ⅲ)removal. The spent TiO2 could be regenerated using H2SO4 and NaOH. The X-ray diffraction patterns of pristine and spent TiO2 reveal no change in the crystalline structure,which ensures its high effectiveness after regeneration and enables its reuse. Synchrotron-radiation-based micro-beam X-ray fluorescence (μ-XRF) was used to analyze the in situ elemental composition of the solid residue after regeneration,revealing the coexistence of many heavy metals. Arsenic K-edge micro-focus X-ray absorption near-edge structure (μ-XANES) analysis suggested the existence of As(Ⅴ) in the solid residue,indicating that strong alkali conditions during the regeneration process may facilitate the oxidation of As(Ⅲ). The small amounts of solid residue produced during the adsorbent regeneration process may be used as a raw material for the production of arsenic compounds. The waste solution can be further treated after mixing with raw water to adjust the pH to neutral. This adsorption,regeneration,and reuse process provides an innovative technique for metallurgical industry wastewater remediation that is promising for practical applications.
-
Key words:
- arsenite /
- metallurgical wastewater /
- granular TiO2 column /
- adsorbent regeneration
-
[1] LUO Ting, CUI Jinli, HU Shan, et al. Arsenic removal and recovery from copper smelting wastewater using TiO2[J]. Environmental Science & Technology, 2010, 44(23):9094-9098 [2] DUDKA S, ADRIANO D C. Environmental impacts of metal ore mining and processing:A review[J]. Journal of Environmental Quality, 1997, 26(3):590-602 [3] NORDSTROM D K. Worldwide occurrences of arsenic in ground water[J]. Science, 2002, 296(5576):2143-2145 [4] MCDONALD D M, WEBB J A, TAYLOR J. Chemical stability of acid rock drainage treatment sludge and implications for sludge management[J]. Environmental Science & Technology, 2006, 40(6):1984-1990 [5] WANG J W, BEJAN D, BUNCE N J. Removal of arsenic from synthetic acid mine drainage by electrochemical pH adjustment and coprecipitation with iron hydroxide[J]. Environmental Science & Technology, 2003, 37(19):4500-4506 [6] BASHA C A, SELVI S J, RAMASAMY E, et al. Removal of arsenic and sulphate from the copper smelting industrial effluent[J]. Chemical Engineering Journal, 2008, 141(1/2/3):89-98 [7] 何孝磊, 程一松, 何丽. HDS工艺处理某矿山酸性废水试验研究[J]. 金属矿山, 2010(1):147-150 [8] MAHONEY J, LANGMUIR D, GOSSELIN N, et al. Arsenic readily released to pore waters from buried mill tailings[J]. Applied Geochemistry, 2005, 20(5):947-959 [9] KRAUSE E, ETTEL V A. Solubilities and stabilities of ferric arsenate compounds[J]. Hydrometallurgy, 1989, 22(3):311-337 [10] RIVEROS P A, DUTRIZAC J E, SPENCER P. Arsenic disposal practices in the metallurgical industry[J]. Canadian Metallurgical Quarterly:The Canadian Journal of Metallurgy and Materials Science, 2001, 40(4):395-420 [11] BANG S, PATEL M, LIPPINCOTT L, et al. Removal of arsenic from groundwater by granular titanium dioxide adsorbent[J]. Chemosphere, 2005, 60(3):389-397 [12] KHANDAKER N R, KRUMHANSL J, NEIDEL L, et al. Performance evaluation of AlCAN-AASF50-ferric coated activated alumina and granular ferric hydroxide (GFH)for arsenic removal in the presence of competitive ions in an active well:Kirtland field trial-initial studies[R]. SAND2005-7693. Albuquerque, New Mexico and Livermore, California, USA:Sandia National Laboratories, 2006 [13] 崔金立, 罗婷, 景传勇. 一种用于吸附重金属的纳米二氧化钛的合成方法与应用:200910238505[P]. 2009-11-27 [14] 汪昆平, 邓荣森. 活性炭吸附饮用水中卤乙酸的RSSCT试验研究[J]. 水处理技术, 2006, 32(10):21-24 [15] 樊建新, 王玉军, 崔晓丹, 等. 基于同步辐射的硬X射线荧光技术分析污染土壤中重金属分布[J]. 生态与农村环境学报, 2013, 29(3):375-379 [16] CULLEN W R, REIMER K J. Arsenic speciation in the environment[J]. Chemical Reviews, 1989, 89(4):713-764
计量
- 文章访问数: 2548
- HTML全文浏览数: 1956
- PDF下载数: 528
- 施引文献: 0