离子液体辅助水热法合成锡酸锌及其光催化性能
Ionic liquid-assisted hydrothermal synthesis of Zn2SnO4 and their photocatalytic properties
-
摘要: 采用离子液体辅助水热法制备锡酸锌,考察了离子液体添加量对锡酸锌晶相、形貌及光催化性能的影响。通过XRD、TEM分别对锡酸锌的晶相和形貌进行研究。通过在紫外光照射下光催化降解亚甲基蓝溶液对锡酸锌的光催化性能进行表征。当[Emim]BF4添加量为0.5 mmol时,制得的八面体锡酸锌结晶度高且对染料亚甲基蓝有较高光催化降解能力。自由基捕获实验证明羟基自由基是光催化反应的主要活性物种。Abstract: Zinc stannate was prepared via an ionic-liquid-assisted hydrothermal method.The influence of the amount of ionic liquid added on the crystal phase,morphology,and photocatalytic activity was investigated in detail.The crystal phase and morphology of the zinc stannate were investigated using X-ray diffraction and transmission electron microscopy,respectively.The photocatalytic activities of the samples were evaluated through the photocatalytic degradation of methylene blue under ultraviolet light irradiation.When the amount of [Emim]BF4 added was 0.5 mmol,the octahedral zinc stannate showed higher crystallinity and highly efficient photocatalytic activity for the degradation of methylene blue under ultraviolet light irradiation.Kinetic studies using the radical scavenger technologies suggested that ·OH was the dominant photooxidant.
-
Key words:
- ion liquid /
- hydrothermal synthesis /
- zinc stannate /
- photocatalysis /
- degradation
-
随着矿区农业、采矿业以及化工生产业的不断发展,污染物不断地排放,导致矿区地区浅层地下水不同程度的污染[1-3]。监测显示,某矿区地下水中超标的污染物有重金属Cr、阴离子
SO2−4 、F−等。Cr(Ⅵ)在环境中呈流动态,毒性很高,很容易穿透细胞壁,在细胞代谢过程中,可引起DNA氧化和非氧化2种形式的损坏,从而导致突变和染色体断裂,影响DNA的自然复制和转录,并能引起突变,主要导致肝细胞功能、肾脏和肺部的癌变[4-6];长期饮用高氟水,轻者牙齿产生斑釉、关节疼痛,重者会影响骨骼发育,甚至丧失劳动力[7-9]。目前,我国有400余个城市以地下水为供水水源[10],有些城市地下水甚至成为唯一供水水源。地下水关乎人民健康,一旦受到污染,造成的危害将无法估量。因此,寻找合适的污染地下水治理技术显得尤为重要。硫酸盐还原菌(SRB)价格低廉,是去除重金属离子非常有效的方法之一。董慧等[11]利用SRB去除矿山废水中污染物,在进水pH为3.0、水温为26~27 ℃、进水Fe2+的质量度低于450 mg·L−1、mCOD/m硫酸根离子>2.0的条件下,
SO2−4 平均去除率在80%以上,且对水中耗氧有机污染物(以COD计)有较好的去除效果,对重金属平均去除率在99%以上。董艳荣等[12]研究了SRB分离及处理煤矿酸性废水工艺,结果表明,在接种量为10%、接种时间为5 d条件下,对煤矿酸性废水中SO2−4 和Fe2+的去除率分别为74.71%和99.18%。SRB虽然在处理污染水方面具有一定的优势,但SRB需要充足碳源,且易受外界因素干扰,单独作用效果差。而SRB固定化技术是将其高度密集于一个有限的空间内,使其保持一定活性,具有处理污水效果好、利于固液分离、可重复利用、回收方便和抗重金属离子抑制能力强等优点[13-14]。安文博等[15]利用生铁屑固定SRB的实验表明,SRB颗粒能够抵抗pH=4的酸溶液,并在碱、盐溶液中能够保持较好稳定性,对Mn2+的吸附容量符合Freundlich等温吸附方程(R2=0.988 68,1/n=0.489 6),吸附动力学符合Elovich动力学模型(R2=0.996 4)。有机-无机杂化材料是一种介于有机聚合物和无机聚合物之间的一种新型纳米复合材料[16-17],其兼具两者的优点,目前,已有研究将其用于水处理技术中。邱迅[18]研究了一种基于二氧化硅的有机-无机杂化材料,将其用于处理水中低浓度的Cu2+、Cr6+等重金属离子,结果表明,该种杂化材料对Cu2+具有一定的吸附选择性,且在中性条件下吸附效果较好,可将50 mg·L−1以下的K2Cr2O7溶液中的Cr(Ⅵ)几乎完全还原并吸附。该矿区地下水污染成分复杂,单一杂化材料无法使出水Cr(Ⅵ)、
SO2−4 浓度满足要求,单一SRB无法使F−有效去除,目前,很少有研究可同时去除该地区多种污染成分的材料。所以,为克服单一处理方法的局限性,考虑将杂化材料与SRB结合,实现对污染物的有效去除。参考周彩华等[19]利用溶胶-凝胶工艺制备氧化锆溶胶、王国祥[20]利用二氧化钛与丙烯酰胺杂化制备杂化材料的实验方法,本研究选择ZrOCl2与丙烯酰胺单体杂化聚合,得到纳米ZrO2-聚丙烯酰胺杂化材料,利用该杂化材料中聚丙烯酰胺这一中间物质对SRB进行固定化处理,形成纳米ZrO2-SRB颗粒。该颗粒对水中污染物具有还原和吸附双重作用,可以同时去除铬和氟。1. 材料与方法
1.2 硫酸盐还原菌的富集、分离与鉴定
实验所用菌株取自阜新市皮革园区生化池。以乙醇为碳源、按5%接种量接入菌株进行富集培养,直至其适应新碳源环境,并能够大量繁殖;采用叠皿夹层培养法对菌株进行纯化分离,直至得到形态单一菌落,将其继续培养即得到纯化的菌株;对菌株分别进行革兰氏染色、芽孢染色、在1 600倍油镜下镜检观察;将菌株置于2份等量的浅层液体培养基中培养:1份进行摇床振荡好氧培养,1份在液体培养基液面滴加石蜡油置于厌氧培养箱中进行厌氧培养。3 d后分别进行基因测序,并利用透射电镜在放大30 000倍条件下进行镜检观察。
1.2 纳米ZrO2-聚丙烯酰胺杂化材料制备
室温下,称取2 g氧氯化锆,溶于200 mL质量分数为95%的乙醇溶液中,ZrOCl2在乙醇溶液中进行水解和缩聚反应,反应如式(1)和式(2)所示。
Zr−Cl+H2O→Zr−OH+HCl (1) Zr−OH+HO−Zr−O→Zr+H2O (2) 在得到无色透明的纳米二氧化锆明胶后,向200 mL溶胶中加入0.6 g丙烯酰胺单体、0.05 g亚硫酸氢钠和过硫酸钾作为引发剂,将混合溶液充分搅拌均匀,在25 ℃下,进行聚合反应30 min,得到纳米ZrO2-聚丙烯酰胺无机-有机杂化材料。
1.3 硫酸盐还原菌的固定化
称取质量分数为2.5%的海藻酸钠于300 mL蒸馏水中,充分溶胀后,加入200 mL纳米ZrO2-聚丙烯酰胺杂化材料混匀溶解,密封并于室温下存放8~12 h,再向混合溶液中加入质量分数为2.5%的制孔剂聚乙二醇以及100 mL经驯化培养后处于对数期生长的菌液(平板计数法得到菌液对数期的菌密度为3×108个·mL−1),充分混合、搅拌均匀后,利用注射器滴入到pH=6的2%CaCl2饱和硼酸溶液中,期间利用搅拌器以100 r·min−1的搅拌速率进行交联。4 h后取出颗粒,用0.9%生理盐水进行冲洗,再吸干表面水分,重复3遍。在小球使用前,再放入富集培养基中激活12 h。
1)机械强度测试。将固定化细菌颗粒放于100 mL的玻璃注射器中,向玻璃注射器施加一定的压力,观察颗粒的破损情况;同时,用手捏固定好的细菌颗粒,根据整个过程细菌颗粒的变化情况来描述其机械强度,从颗粒的硬度以及弹性对其进行强度分级:当颗粒较软时,认为其强度等级较差;当颗粒具有一定的硬度、弹性较差时,认为其强度等级中等;当颗粒具有一定的硬度且弹性好时,认为其强度等级良好;当颗粒硬度大且易碎时,认为其强度等级为优。
2)传质性能测试。将固定化的细菌颗粒加入到一定量的滴有墨水的蒸馏水中,2 h后取出,观察颗粒颜色进入颗粒的深度,与未加入墨水的固定化颗粒进行对比,确定其传质性能,传质性能分级如下:当颗粒仅有表面变黑且颜色较浅时,认为其传质能力较差;当距离颗粒中心约1/2处变黑且颜色较深时,认为其传质能力中等;当颗粒中心变黑、颜色较浅时,认为其传质能力良好;当颗粒中心变黑、颜色较深时,认为其传质能力为优。
3)成球性能测试。根据固定化过程肉眼判断成球状况的规则性,根据颗粒成球的黏连性判断颗粒的成球性能。成球性能分级如下:当难于成球、黏连严重时,认为其成球性能较差;当成球的形状不规则、部分黏连时,认为其成球性能中等;当成球形状规则、部分黏连时,认为其成球性能良好;当成球形状规则、无黏连时,认为其成球性能为优。
4)细菌活性测试。取一定量的细菌颗粒,置于上述配置的细菌富集培养基中,并向培养基中加入浓度为500 mg·L−1的
SO2−4 ,隔一段时间后,观察培养基的颜色变化情况,测定SO2−4 的浓度变化,根据是否产生臭鸡蛋味的气体情况来判断固定化细菌的活性。细菌活性分级如下:当溶液颜色无明显变化、SO2−4 去除率<20%、产生极少臭鸡蛋气味气体时,认为其活性较差;当溶液颜色较浅、SO2−4 去除率为40%~60%、产生少量臭鸡蛋气味气体时,认为其活性中等;当溶液变为较黑色、SO2−4 去除率60%~80%、产生较多臭鸡蛋气味气体时,认为其活性良好;当溶液变为深黑色、SO2−4 去除率80%~95%、产生大量的臭鸡蛋气味气体时,认为其活性为优。1.4 动态实验
设计6组直径为50 mm、高为50 cm、总容积为0.98 L的动态柱,底部0~3 cm填有进水炉渣含水层,含水层以上30 cm填充反应层,反应层以上设有3 cm炉渣过滤层,如图1所示。1#柱反应层采用纳米ZrO2-SRB颗粒,颗粒中包含200 mL杂化材料和100 mL菌液,进水水力负荷为2.935 m3·(m2·d)−1,进水成分近似模拟该地区地下水的成分:5 mg·L−1 F−、10 mg·L−1 Cr(Ⅵ)、10 mg·L−1 Cr(Ⅲ)、500 mg·L−1
SO2−4 、pH=4.6;2#柱反应层采用与1#柱相同密度的SRB,进行挂膜处理,且在2#柱中加入与1#柱相同量的杂化材料;3#、4#柱进水水力负荷分别为1.468、4.403 m3·(m2·d)−1,5#柱进水成分中将Cr(Ⅵ)提高为50 mg·L−1,6#柱进水成分中将F−提高为10 mg·L−1;各柱中保持纳米ZrO2-SRB颗粒数量以及其他进水条件均与1#柱相同。连续测定出水各个污染物的浓度及pH的提升效果。1.5 再生实验
利用0.1 mol·L−1 HCl、0.2 mol·L−1乙醇和质量分数为2.5%硫脲作为洗脱液,将吸附污染离子后的纳米ZrO2-SRB颗粒加入50 mL洗脱液,并在35 ℃下180 r·min−1下振荡处理60 min,再放入富集培养基中激活12 h。脱附完成后,再次进行吸附,如此吸附-脱附重复3次,并计算每次再生后颗粒对Cr(Ⅵ)、Cr(Ⅲ)、
SO2−4 、F−的去除率。1.6 测定方法
pH采用玻璃电极法测定;Cr(Ⅵ)采用二苯碳酰二肼分光光度法测定;Cr(Ⅲ)采用高锰酸钾氧化-二苯碳酰二肼分光光度法测定;
SO2−4 采用铬酸钡分光光度法测定;F−采用离子选择电极法测定。2. 结果与分析
2.1 硫酸盐还原菌的鉴定结果与分析
1 600倍油镜下镜检SRB的革兰氏染色、经番红复染的芽孢染色、SRB透射电镜放大30 000倍的检测结果如图2所示。由图2(a)可看出,经革兰氏染色后,SRB被染为红色,初步判断该菌株呈阴性;由图2(b)可看出,经番红复染后被染为红色,说明该菌株无芽孢;由图2(c)可明显看出,该菌株呈杆状,且具有鞭毛。
好氧和厌氧条件下培养的菌株经DNA测序后,测序结果相同,说明该菌株生化类型为兼性厌氧型。基因测序以及BLAST基因库比对、序列同源性分析如表1所示,可看出,该兼性厌氧菌与Citrobacter amalonaticus TB10的相似性最高,相似度达99.93%,说明该菌株与Citrobacter amalonaticus TB10属于同一性质的菌株,均为柠檬酸性杆菌。并利用MEGA 6.0软件得到所测菌株序列与其他物质的亲缘关系;得到的进化树结果如图3所示。
表 1 序列同源性分析Table 1. Sequence homology analysis菌属 菌株 相似度/% Citrobacter amalonaticus TB10 99.93 Citrobacter amalonaticus HAMBI 1296 99.86 Citrobacter amalonaticus LMG 7873 99.78 Uncultured Citrobacter sp. clone F2AUG.11 99.71 Citrobacter farmeri CIP 104553 99.64 Citrobacter farmeri 17.7 KSS 99.57 Uncultured bacterium clone KSR-CFL3 99.49 Citrobacter amalonaticus OFF7 99.42 Citrobacter sp CF3-C 99.35 Citrobacter sp. enrichment culture clone TB39-15 99.28 2.2 纳米ZrO2-聚丙烯酰胺杂化材料的结构表征分析
将制得的纳米ZrO2-聚丙烯酰胺杂化材料在60 ℃条件下烘干,采用SEM在放大倍数为5 000倍下观察其表观结构,并进行EDS能谱和FT-IR红外光谱分析,结果如图4所示。可以看出,纳米ZrO2-聚丙烯酰胺杂化材料表面孔隙明显,质地均匀,分散性较好;主要含N—H、C—H、C=O、C—N、Zr—O—Zr特征峰,说明杂化材料中既有有机物吸收峰又有无机物吸收峰,由此可见,ZrO2与聚丙烯酰胺间是通过共价键连接。
2.3 纳米ZrO2-SRB颗粒的性能测试
固定化细菌颗粒如图5所示。通过对其做系列性能分析后,发现其在成球过程中形状规则且无黏连,说明其成球性好;在玻璃注射器中施加一定的压力后不易破损,压力增大,破损程度增大,说明其具有一定的硬度、弹性较好;将其加入到滴有墨水的蒸馏水中,2 h取出后发现其中心颜色变黑,且颜色较深,说明其传质性能良好;将其放于培养基中一段时间后,发现培养基颜色变深,且有黑色沉淀生成,会产生一种臭鸡蛋气味的气体产生,此时测定硫酸根的去除率为69.9%,说明其活性良好。
2.4 动态实验结果分析
6个动态柱的出水情况如图6~图11所示。对比1#、2#动态柱出水情况,可以看出,在SRB和杂化材料投加量相同条件下,纳米ZrO2-SRB颗粒反应层对Cr(Ⅵ)、Cr(Ⅲ)、
SO2−4 、F−的去除效果要好于挂膜的SRB,对溶液中Cr(Ⅵ)、Cr(Ⅲ)、SO2−4 的有效去除时间要长于挂膜的SRB反应层,这说明纳米ZrO2-SRB颗粒可以利用杂化材料中的乙醇作碳源。纳米ZrO2-SRB颗粒对溶液中Cr(Ⅵ)、Cr(Ⅲ)、SO2−4 的作用包括SRB和纳米ZrO2的双重作用,而F−的去除主要依靠纳米ZrO2的吸附作用。Cr(Ⅵ)、Cr(Ⅲ)、SO2−4 、F−的最大去除率分别为99.7%、98.8%、70.4%、92.4%;单独的SRB对Cr(Ⅵ)、Cr(Ⅲ)、SO2−4 的最大去除率分别为99.3%、72.4%、71.2%,对F−没有去除效果。且可以看出,2种反应层对pH的提升效果影响较小,这说明溶液中的pH主要靠SRB的作用,纳米ZrO2对溶液pH没有提升作用。对比1#、3#、4#动态柱的出水情况,可以看出,不同进水水力负荷均不会影响到纳米ZrO2-SRB颗粒对Cr(Ⅵ)、Cr(Ⅲ)、
SO2−4 、F−的最大去除率,对Cr(Ⅵ)、Cr(Ⅲ)、SO2−4 、F−的最大去除率分别为99.7%、98.7%、71.2%、93.7%,但随着进水负荷的增大,维持污染物最大去除率的时间较短,pH最大提升水平维持的时间也有所缩短。在进水水力负荷为2.935 m3·(m2·d)−1、反应进行1~14 d时,F−的去除率可以维持在最大水平,7~23 d期间对Cr(Ⅵ)和SO2−4 的去除率可以维持在最大水平;而当水力负荷为4.403 m3·(m2·d)−1时,对F−的去除率仅在4 d前可维持最大,对Cr(Ⅵ)和SO2−4 的去除率仅在4.5~8.5 d时保持最大,可看出,能够保证各个污染物有效去除的时间明显缩短了。这是因为在反应层高度相同时,进水流速越大,对反应层的传质推动力越大,导致污染物与反应层的接触时间缩短,污染物未来得及和反应层充分接触便流出动态柱,但进水流速也不宜太小,太小的进水流速会延长接触时间,在相同的处理时间内处理的水量小,所以最佳进水水力负荷选择2.935 m3·(m2·d)−1较为适宜。对比1#、5#、6# 3个动态柱内的出水情况,可以看出,当Cr(Ⅵ)的浓度增加到50 mg·L−1时,纳米ZrO2-SRB颗粒对Cr(Ⅵ)的最大去除率仍然可维持在99.7%,但在初始1~3 d时,由于SRB的活性较低,5#动态柱出水中Cr(Ⅵ)的去除率仅为62.3%,相比于1#动态柱去除率91.8%,明显有所下降。这说明纳米ZrO2对高浓度Cr(Ⅵ)的选择吸附性较低,但是靠SRB对Cr(Ⅵ)的还原作用仍然可使出水浓度维持在较佳水平,且当Cr(Ⅵ)浓度增大后,不会影响到纳米ZrO2对F−和Cr(Ⅲ)的吸附效果,但对
SO2−4 的去除效果会有一定影响。由此可见,纳米ZrO2对F−和Cr(Ⅲ)的吸附选择性优于Cr(Ⅵ)优于SO2−4 ;当F−浓度增加到10 mg·L−1时,对比1#和6#动态柱内的出水情况,可以看出,6#动态柱中在反应1~3 d时,对F−、Cr(Ⅵ)、SO2−4 的去除率较1#动态柱中的去除率有所变化,对F−的去除率由93.7%上升为96.7%,对Cr(Ⅵ)的去除率由原来的91.8%下降为87.8%,对SO2−4 的去除率由原来的30.2%降为17.5%,对Cr(Ⅲ)的去除效果基本上没有变化,说明纳米ZrO2对F−的吸附性能优于Cr(Ⅲ)、Cr(Ⅵ)和SO2−4 。2.5 吸附再生实验结果分析
纳米ZrO2-SRB颗粒经过0、1、2、3次脱附再生后,对Cr(Ⅵ)、Cr(Ⅲ)、
SO2−4 、F−的去除结果如图12所示。由图12可看出,经过3次循环再生后,较最初对Cr(Ⅵ)、Cr(Ⅲ)、SO2−4 、F−的去除率仅分别降低了1.8%、4.0%、1.5%、4.2%。由此可见,SRB在经过加入碳源乙醇和培养基活化后可以恢复其活性,颗粒可以达到较好的再生效果。这说明0.1 mol·L−1 HCl、0.2 mol·L−1乙醇、质量分数为2.5%硫脲和培养基的活化作用对于纳米ZrO2-SRB颗粒是一种良好的再生剂。2.6 纳米ZrO2-SRB颗粒处理铬和氟污染地下水的机理分析
1)微观结构表征。将包埋后得到的纳米ZrO2-SRB颗粒和处理不含Cr(Ⅲ)的污染地下水后得到的颗粒分别在60 ℃条件下烘干,采用SEM在放大倍数为2 000倍下观察材料的表观结构和XRD分析,结果如图13所示。可以看出,处理污染物前,细菌颗粒呈现明显的微球状,孔道通畅,表面较为光滑,主要含有的成分是ZrO2和一种有机物CH4N2O·C2H2O4。吸附处理污染水后的细菌颗粒形状变得不为明显,且表面变得粗糙,出现大量的凸形褶皱;处理污染水后的颗粒成分主要有C、O、Zr、S、H、Cr、F等元素;处理不含Cr(Ⅲ)的污水后,出现了ZrCr2H10、C6Cr2O12、ZrS0.67、ZrO0.67F2、Cr(OH)3新物质,Cr最终以Cr(Ⅵ)和Cr(Ⅲ)形式存在,说明SRB可将溶液中的
SO2−4 还原为S2-、将Cr(Ⅵ)还原为Cr(Ⅲ),最终以ZrCr2H10、Cr(OH)3、ZrS0.67的形式被去除,且ZrS0.67是硫化物的最终去向,残留在颗粒中;最终产物中含有Cr(Ⅵ),说明ZrO2-SRB处理污染地下水不但具有还原过程还存在纳米ZrO2的吸附过程,可吸附水中的Cr(Ⅵ)和F−,最终分别以C6Cr2O12和ZrO0.67F2形式被去除。2)等温吸附实验。取100 mL含10 mg·L−1 Cr(Ⅵ)、10 mg·L−1 Cr(Ⅲ)、5 mg·L−1 F−、500 mg·L−1
SO2−4 的溶液9份,每份分别加入质量为0.83、1.66、2.49、3.32、4.15、4.98、5.81、6.64、7.47 g纳米ZrO2-聚丙烯酰胺杂化材料,调节原始溶液至pH=7,置于温度为25 ℃条件下,振荡反应20 min后取出,经过滤后分别测定溶液中Cr(Ⅵ)、Cr(Ⅲ)、F−和SO2−4 浓度。Langmuir和Freundlich模型的方程式分别如式(3)和式(4)所示。
CeQe=1bQm+CeQm (3) lnQe=lnKf+1nlnCe (4) 式中:
Ce 为平衡浓度,mg·L−1;b 为Langmuir 吸附常数,L·mg−1;Qm 为达到饱和时的吸附量,mg·g−1;Qe 为达到动态平衡时的吸附量,mg·g−1。Kf 为Freundlich 吸附常数;n 为经验常数。F−、Cr(Ⅵ)、Cr(Ⅲ)、
SO2−4 4种离子的Langmuir模型和Freundlich模型拟合结果如表2所示。由表2可知,Freundlich模型(R2=0.997 3、0.991 6、0.998 1、0.991 1)相比于Langmuir模型(R2=0.883 9、0.790 0、0.723 2、0.639 6)可以更好地拟合杂化材料对Cr(Ⅵ)、Cr(Ⅲ)、F−、SO2−4 的吸附过程,这说明吸附不仅仅是均匀的单层吸附,更主要的是多层吸附过程。表 2 吸附等温线拟合方程及相关系数Table 2. Adsorption isotherm fitting equation and correlation coefficients离子类型 Langmuir Freundlich 拟合方程 R2 拟合方程 R2 F- 0.883 9 0.997 3 Cr(Ⅵ) 0.790 0 0.991 6 Cr(Ⅲ) 0.723 2 0.998 1 0.639 6 0.991 1 3. 结论
1)室内动态柱实验结果表明:纳米ZrO2-SRB颗粒为反应层、进水水力负荷2.935 m3·(m2·d)−1时对污染物的去除效果更好;且ZrO2-SRB颗粒对F−的吸附选择性优于Cr(Ⅲ)、Cr(Ⅵ)和
SO2−4 。2)结构表征结果表明:纳米ZrO2-SRB颗粒处理污染物后出现大量凸形褶皱,且颗粒组成中出现S、Cr、F元素。
3)纳米ZrO2-SRB颗粒处理污染物的机理为:SRB对Cr(Ⅵ)、
SO2−4 存在还原作用,杂化材料对Cr(Ⅵ)、Cr(Ⅲ)、F−存在吸附作用;且吸附等温线符合Freundlich模型,这说明吸附过程是多层吸附。4) 0.1 mol·L−1 HCl、0.2 mol·L−1乙醇、质量分数为2.5%硫脲和培养基的活化共同作用对于纳米ZrO2-SRB颗粒的再生具有良好的效果。
-
[1] FU Xianliang,WANG Xuxu,LONG Jinlin,et al.Hydrothermal synthesis,characterization,and photocatalytic properties of Zn2SnO4.Journal of Solid State Chemistry,2009,182(3):517-524 [2] JACULINE M.M.,RAJ C.J.,DAS S.J.Hydrothermal synthesis of highly crystalline Zn2SnO4 nanoflowers and their optical properties.Journal of Alloys and Compounds,2013,577:131-137 [3] FOLETTO E.L.,SIMÕES J.M.,MAZUTTI M.A.,et al.Application of Zn2SnO4 photocatalyst prepared by microwave-assisted hydrothermal route in the degradation of organic pollutant under sunlight.Ceramics International,2013,39(4):4569-4574 [4] KIM M.J.,PARK S.H.,HUH Y.D.Photocatalytic activities of hydrothermally synthesized Zn2SnO4.Bulletin of the Korean Chemical Society,2011,32(5):1757-1760 [5] WANG Ke,HUANG Ying,SHEN Yuanyuan,et al.Graphene supported Zn2SnO4 nanoflowers with superior electrochemical performance as lithium-ion battery anode.Ceramics International,2014,40(9 Part B):15183-15190 [6] ZHAO Yang,HUANG Ying,SUN Xu,et al.Hollow Zn2SnO4 boxes wrapped with flexible graphene as anode materials for lithium batteries.Electrochimica Acta,2014,120:128-132 [7] YAN Chubo,YANG Jianrui,XIE Qinxing,et al.Novel nanoarchitectured Zn2SnO4 anchored on porous carbon as high performance anodes for lithium ion batteries.Materials Letters,2015,138:120-123 [8] JACULINE M.M.,RAJ C.J.,KIM H.J,et al.Zinc stannate nanoflower (Zn2SnO4) photoanodes for efficient dye sensitized solar cells.Materials Science in Semiconductor Processing,2014,25:52-58 [9] WANG Yufen,LI Ke'nan,XU Yangfan,et al.Hierarchical Zn2SnO4 nanosheets consisting of nanoparticles for efficient dye-sensitized solar cells.Nano Energy,2013,2(6):1287-1293 [10] GANBAVLE V.V.,PATIL M.A.,DESHMUKH H.P.,et al.Development of Zn2SnO4 thin films deposited by spray pyrolysis method and their utility for NO2 gas sensors at moderate operating temperature.Journal of Analytical and Applied Pyrolysis,2014,107:233-241 [11] WANG Shumei,YANG Zhongsen,LU Mengkai,et al.Coprecipitation synthesis of hollow Zn2SnO4 spheres.Materials Letters,2007,61(14/15):3005-3008 [12] LIN H.F.,LIAO S.C.,HUNG S.W.,et al.Thermal plasma synthesis and optical properties of Zn2SnO4 nanopowders.Materials Chemistry and Physics,2009,117(1):9-13 [13] UCHIYAMA H.,NAGAO R.,KOZUKA H.Photoelectrochemical properties of ZnO-SnO2 films prepared by sol-gel method.Journal of Alloys and Compounds,2013,554:122-126 [14] LOU Xiangdong,JIA Xiaohua,XU Jiaqiang,et al.Hydrothermal synthesis,characterization and photocatalytic properties of Zn2SnO4 nanocrystal.Materials Science and Engineering:A,2006,432(1/2):221-225 [15] FIROOZ A.A.,MAHJOUB A.R.,KHODADADI A.A.,et al.High photocatalytic activity of Zn2SnO4 among various nanostructures of Zn2xSn1-xO2 prepared by a hydrothermal method.Chemical Engineering Journal,2010,165(2):735-739 [16] ANNAMALAI A.,CARVALHO D.,WILSON K.C.,et al.Properties of hydrothermally synthesized Zn2SnO4 nanoparticles using Na2CO3 as a novel mineralizer.Materials Characterization,2010,61(9):873-881 [17] ZHU Hongliang,YANG Deren,YU Guixia,et al.Hydrothermal synthesis of Zn2SnO4 nanorods in the diameter regime of sub-5 nm and their properties.The Journal of Physical Chemistry B,2006,110(15):7631-7634 [18] ZENG Jia,XIN Mudi,LI Kunwei,et al.Transformation process and photocatalytic activities of hydrothermally synthesized Zn2SnO4 nanocrystals.The Journal of Physical Chemistry C,2008,112(11):4159-4167 [19] 祝永强,陈芳艳,陆熠峰,等.BiVO4催化剂的离子液体辅助水热合成及其可见光催化活性.环境工程学报,2015,9(4):1875-1880 ZHU Yongqiang,CHEN Fangyan,LU Yifeng,et al.Ionic liquid-assisted hydrothermal synthesis and visible-light-driven photocatalytic activity of BiVO4.Chinese Journal of Environmental Engineering,2015,9(4):1875-1880(in Chinese) [20] MAO Danjun,Lü Xiaomeng,JIANG Zhifeng,et al.Ionic liquid-assisted hydrothermal synthesis of square BiOBr nanoplates with highly efficient photocatalytic activity.Materials Letters,2014,118:154-157 [21] TANG Zhe,LIANG Jilei,LI Xuehui,et al.Synthesis of flower-like Boehmite (γ-AlOOH) via a one-step ionic liquid-assisted hydrothermal route.Journal of Solid State Chemistry,2013,202:305-314 [22] CHEN Na,WANG Kuan,ZHANG Xin,et al.Ionic liquid-assisted hydrothermal synthesis of β-MnO2 with hollow polyhedra morphology.Colloids and Surfaces A:Physicochemical and Engineering Aspects,2011,387(1/2/3):10-16 [23] ZHANG Chuan,ZHU Yongfa.Synthesis of square Bi2WO6 nanoplates as high-activity visible-light-driven photocatalysts.Chemistry of Materials,2005,17(13):3537-3545 [24] ZHANG Liwu,CHENG Hanyun,ZONG Ruilong,et al.Photocorrosion suppression of ZnO nanoparticles via hybridization with graphite-like carbon and enhanced photocatalytic activity.The Journal of Physical Chemistry C,2009,113(6):2368-2374 期刊类型引用(1)
1. 孙群群,屈婧祎,童曼,袁松虎. 地下水水化学组成对Fe(Ⅱ)氧化过程中锰氧化菌失活的影响. 安全与环境工程. 2021(03): 101-107+205 . 百度学术
其他类型引用(4)
-

计量
- 文章访问数: 1611
- HTML全文浏览数: 1204
- PDF下载数: 491
- 施引文献: 5