柠檬酸改性竹纤维吸附剂的制备

向文英, 李盛柏, 李坤, 李宁. 柠檬酸改性竹纤维吸附剂的制备[J]. 环境工程学报, 2016, 10(10): 5542-5548. doi: 10.12030/j.cjee.201504222
引用本文: 向文英, 李盛柏, 李坤, 李宁. 柠檬酸改性竹纤维吸附剂的制备[J]. 环境工程学报, 2016, 10(10): 5542-5548. doi: 10.12030/j.cjee.201504222
XIANG Wenying, LI Shengbai, LI Kun, LI Ning. Preparation of bamboo fibers adsorbent modified by citric acid[J]. Chinese Journal of Environmental Engineering, 2016, 10(10): 5542-5548. doi: 10.12030/j.cjee.201504222
Citation: XIANG Wenying, LI Shengbai, LI Kun, LI Ning. Preparation of bamboo fibers adsorbent modified by citric acid[J]. Chinese Journal of Environmental Engineering, 2016, 10(10): 5542-5548. doi: 10.12030/j.cjee.201504222

柠檬酸改性竹纤维吸附剂的制备

  • 基金项目:

    高等学校学科创新引智计划资助(B13041)

  • 中图分类号: X703

Preparation of bamboo fibers adsorbent modified by citric acid

  • Fund Project:
  • 摘要: 采用预处理和柠檬酸酯化反应2个阶段的处理方法对竹纤维进行修饰改性,考察了预处理溶液浓度、预处理时间、柠檬酸用量比、催化剂用量比、热反应时间,热反应温度对改性效果的影响,并测定了改性后竹纤维材料对重金属Ni2+的吸附性能。实验结果表明,当预处理溶液浓度取5%,预处理时间控制在180 min,柠檬酸用量比取20 mmol·g-1,催化剂次磷酸钠用量比取0.4,热反应时间控制在90 min,热反应温度为120℃时,改性效果达到最佳,得到的最高羧基团含量为3.373 mmol·g-1。改性后的竹纤维材料对Ni2+的吸附容量高达9.486 mg·g-1,相比未改性的竹纤维,吸附性能上有显著提升。
  • 加载中
  • [1] HE Mingxiong, WANG Jingli, QIN Han, et al. Bamboo: A new source of carbohydrate for biorefinery. Carbohydrate Polymers,2014, 111: 645-654
    [2] 窦营, 余学军, 岩松文代. 中国竹子资源的开发利用现状与发展对策. 中国农业资源与区划,2011, 32(5): 65-70 DOU Ying, YU Xuejun, FUMIYO I. The current situation and countermeasures of bamboo resource development and utilization of China. Chinese Journal of Agricultural Resources and Regional Planning,2011, 32(5): 65-70(in Chinese)
    [3] 周益权, 耿养会, 蒋宣斌, 等. 重庆竹资源开发利用现状与发展对策. 竹子研究汇刊,2011, 30(3): 58-61 ZHOU Yiquan, GENG Yanqui, JIANG Xuanbin, et al. The situation of exploitation and utilization and countermeasures for the development of bamboo industry in Chongqing. Journal of Bamboo Research,2011, 30(3): 58-61(in Chinese)
    [4] OUYANG Xiaokun, JIN Ru'na, YANG Leping, et al. Bamboo-derived porous bioadsorbents and their adsorption of Cd(II) from mixed aqueous solutions. RSC Advances,2014, 54(4): 28699-28706
    [5] 方润, 陈云平. 竹屑基吸附材料的制备及吸附行为研究. 纤维素科学与技术,2013, 21(4): 15-22 FANG Run, CHEN Yunping. Preparation and adsorption performance of bamboo-based dye adsorbent. Journal of Cellulose Science and Technology,2013, 21(4): 15-22(in Chinese)
    [6] GUO Doudou, PAN Hao, LIU Hailu, et al. Ultrasonic wave-assisted preparation of bamboo powder-based adsorbents for Pb2+ removal. Chemistry and Industry of Forest Products,2013, 33(6): 1-6
    [7] 龚新怀, 许琪琛, 林维晟. 竹屑基吸附材料的制备及其吸附亚甲基蓝的研究. 宿州学院学报,2012, 27(8): 56-59 GONG Xinhuai, XU Qichen, LIN Weisheng. Preparation and adsorption of bamboo sawdust-based adsorbent to methylene blue. Journal of Suzhou University,2012, 27(8): 56-59(in Chinese)
    [8] 朱国营, 陈萍萍. 壳聚糖改性竹制粉末活性炭吸附剂对微囊藻毒素的吸附特性研究. 环境科学学报,2012, 32(4): 790-795 ZHU Guoying, CHEN Pingping. Adsorption characteristics of microcystin-RR by a synthetic powdered bamboo charcoal mixed with chitosan. Acta Scientiae Circumstantiae,2012, 32(4): 790-795(in Chinese)
    [9] LI Qingzhu, CHAI Liyuan, WANG Qingwei, et al. Fast esterification of spent grain for enhanced heavy metal ions adsorption. Bioresource Technology,2010, 101(10): 3796-3799
    [10] SAJAB M. S., CHIA C. H., ZAKARIA S., et al. Citric acid modified kenaf core fibres for removal of methylene blue from aqueous solution. Bioresource Technology,2011, 102(15): 7237-7243
    [11] HAN Runping, ZHANG Lijun, SONG Chen, et al. Characterization of modified wheat straw, kinetic and equilibrium study about copper ion and methylene blue adsorption in batch mode. Carbohydrate Polymers,2010, 79(4): 1140-1149
    [12] MARSHALL W. E., AKIN D. E., WARTELLE L. H., et al. Citric acid treatment of flax, cotton and blended nonwoven mats for copper ion absorption. Industrial Crops and Products,2007, 26(1): 8-13
    [13] ZHU Bo, FAN Tongxiang, ZHANG Di. Adsorption of copper ions from aqueous solution by citric acid modified soybean straw. Journal of Hazardous Materials,2008, 153(1/2): 300-308
    [14] PEHLIVAN E., ALTUN T., PARLAYICI Š. Modified barley straw as a potential biosorbent for removal of copper ions from aqueous solution. Food Chemistry,2012, 135(4): 2229-2234
    [15] LEYVA-RAMOS R., LANDIN-RODRIGUEZ L. E., LEYVA-RAMOS S., et al. Modification of corncob with citric acid to enhance its capacity for adsorbing cadmium(II) from water solution. Chemical Engineering Journal,2012, 180: 113-120
    [16] WANG Shuaiyang, WANG Linping, KONG Weiqing, et al. Preparation, characterization of carboxylated bamboo fibers and their adsorption for lead(II) ions in aqueous solution. Cellulose,2013, 20(4): 2091-2100
    [17] ZHAO Shuna, BAIK O. D., CHOI Y. J., et al. Pretreatments for the efficient extraction of bioactive compounds from plant-based biomaterials. Critical Reviews in Food Science and Nutrition,2014, 54(10): 1283-1297
    [18] YAMASHITA Y., SHONO M., SASAKI C., et al. Alkaline peroxide pretreatment for efficient enzymatic saccharification of bamboo. Carbohydrate Polymers,2010, 79(4): 914-920
    [19] 林瑾, 余少文, 王娟. 不同溶剂对玫瑰花粉内壁破壁的影响. 食品科技,2008(10): 54-56 LIN Jin, YU Shaowen, WANG Juan. The effect of different reagents on the inner-wall breaking of rose pollen. Food Science and Technology,2008(10): 54-56(in Chinese)
    [20] REN Junli, SUN Runcang, PENG Feng. Carboxymethylation of hemicelluloses isolated from sugarcane bagasse. Polymer Degradation and Stability,2008, 93(4):786-793
  • 加载中
计量
  • 文章访问数:  1774
  • HTML全文浏览数:  1353
  • PDF下载数:  695
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-09-13
  • 刊出日期:  2016-10-20

柠檬酸改性竹纤维吸附剂的制备

  • 1.  重庆大学三峡库区生态环境教育部重点实验室, 重庆 400045
  • 2.  重庆大学低碳绿色建筑国际联合研究中心, 重庆 400045
基金项目:

高等学校学科创新引智计划资助(B13041)

摘要: 采用预处理和柠檬酸酯化反应2个阶段的处理方法对竹纤维进行修饰改性,考察了预处理溶液浓度、预处理时间、柠檬酸用量比、催化剂用量比、热反应时间,热反应温度对改性效果的影响,并测定了改性后竹纤维材料对重金属Ni2+的吸附性能。实验结果表明,当预处理溶液浓度取5%,预处理时间控制在180 min,柠檬酸用量比取20 mmol·g-1,催化剂次磷酸钠用量比取0.4,热反应时间控制在90 min,热反应温度为120℃时,改性效果达到最佳,得到的最高羧基团含量为3.373 mmol·g-1。改性后的竹纤维材料对Ni2+的吸附容量高达9.486 mg·g-1,相比未改性的竹纤维,吸附性能上有显著提升。

English Abstract

参考文献 (20)

目录

/

返回文章
返回