微波-均相Fenton法深度处理工业聚集型村镇复合废水

权维强, 檀笑, 牛航宇, 康娟, 任学昌, 鞠勇明, 庞志华. 微波-均相Fenton法深度处理工业聚集型村镇复合废水[J]. 环境工程学报, 2016, 10(10): 5528-5534. doi: 10.12030/j.cjee.201504010
引用本文: 权维强, 檀笑, 牛航宇, 康娟, 任学昌, 鞠勇明, 庞志华. 微波-均相Fenton法深度处理工业聚集型村镇复合废水[J]. 环境工程学报, 2016, 10(10): 5528-5534. doi: 10.12030/j.cjee.201504010
QUAN Weiqiang, TAN Xiao, NIU Hangyu, KANG Juan, REN Xuechang, JU Yongming, PANG Zhihua. Advanced treatment of composite wastewater effluents from industrial cluster towns adopting with microwave-homogeneous Fenton method[J]. Chinese Journal of Environmental Engineering, 2016, 10(10): 5528-5534. doi: 10.12030/j.cjee.201504010
Citation: QUAN Weiqiang, TAN Xiao, NIU Hangyu, KANG Juan, REN Xuechang, JU Yongming, PANG Zhihua. Advanced treatment of composite wastewater effluents from industrial cluster towns adopting with microwave-homogeneous Fenton method[J]. Chinese Journal of Environmental Engineering, 2016, 10(10): 5528-5534. doi: 10.12030/j.cjee.201504010

微波-均相Fenton法深度处理工业聚集型村镇复合废水

  • 基金项目:

    国家科技支撑计划项目(2012BAJ21B07)

    广东省科技计划项目(2016A020221017)

    环保百名人才工程

  • 中图分类号: X703

Advanced treatment of composite wastewater effluents from industrial cluster towns adopting with microwave-homogeneous Fenton method

  • Fund Project:
  • 摘要: 为了提高工业聚集型村镇复合废水处理效率,对微波-均相Fenton技术进行了研究。基于Box-Behnken响应曲面法,重点考察了初始pH值、H2O2/Fe2+摩尔比、H2O2投加量、微波功率及微波辐射时间的单独及交互作用;建立以COD去除率为响应值的二次响应曲面模型并采用方差分析进行验证。结果表明,影响因子显著性排序为:初始pH值 > H2O2投加量 > 微波辐射功率 > H2O2/Fe2+摩尔比 > 微波辐射时间;其中初始pH和H2O2投加量之间交互作用显著;所建数学模型回归性较好,最优组合条件为:初始pH值3.43,H2O2投加量19.2 mmol·L-1,H2O2/Fe2+摩尔比39.42,微波辐射功率597.55 W,微波辐射时间5.12 min,该条件下COD实际去除率为95.3%,与模型预测结果相比偏差为4.7%。采用微波-均相Fenton法深度处理工业聚集型村镇复合废水,出水COD值完全满足《污水综合排放标准》(GB 8978-1996)一级排放标准COD≤100 mg·L-1。
  • 加载中
  • [1] 高新友. 多产业型小城镇废水预处理技术研究. 青岛: 青岛理工大学硕士学位论文, 2011 GAO Xinyou. Study on wastewater pretreatment of small multi-industry towms. Qingdao: Master Dissertation of Qingdao Technological University, 2011(in Chinese)
    [2] 吴军. 村镇生活污水问题及解决方案的思考. 水工业市场, 2011(5): 13-15
    [3] 林齐. 工业综合废水深度处理与污水厂工艺升级改造研究. 北京: 北京工业大学博士学位论文, 2011 LIN Qi. The study on advanced treatment for industry combined wastewater and upgrading reconstruction of treatment plant. Beijing: Doctor Dissertation of Beijing University of Technology, 2011(in Chinese)
    [4] 刘通, 张旭, 李广贺, 等. HUSB反应器提高以印染废水为主的城镇废水可生化性的研究. 环境工程学报, 2011, 5(8): 1707-1712 LIU Tong, ZHANG Xu, LI Guanghe, et al. Enhancement of biodegradability of municipal wastewater consisting mainly of dyeing and printing wastewater by hydrolysis upflow sludge bed. Chinese Journal of Environmental Engineering, 2011, 5(8): 1707-1712(in Chinese)
    [5] ZHANG Gaoke, GAO Yuanyuan, ZHANG Yalei, et al. Fe2O3-Pillared rectorite as an efficient and stable Fenton-like heterogeneous Catalyst for photodegradation of organic contaminants. Environmental Science & Technology, 2010, 44(16): 6384-6389
    [6] KUSIC H., BOZIC A. L., KOPRIVANAC N. Fenton type processes for minimization of organic content in coloured wastewaters: Part I: Processes optimization. Dyes and Pigments, 2007, 74(2): 380-387
    [7] KALLEL M., BELAID C., MECHICHI T., et al. Removal of organic load and phenolic compounds from olive mill waste water by Fenton oxidation with zero-valent iron. Chemical Engineering Journal, 2009, 150(2/3): 391-395
    [8] LUCAS M. S., PERES J. A. Removal of COD from olive mill wastewater by Fenton's reagent: Kinetic study. Journal of Hazardous Materials, 2009, 168(2/3): 1253-1259
    [9] REMYA N., LIN J. G. Current status of microwave application in wastewater treatment-A review. Chemical Engineering Journal, 2011, 166(3): 797-813
    [10] LIN Qunhui, CHEN Guanyi, LIU Yongkai. Scale-up of microwave heating process for the production of bio-oil from sewage sludge. Journal of Analytical and Applied Pyrolysis, 2012, 94: 114-119
    [11] CHANG S. H., WANG K. S., LIANG H. H., et al. Treatment of Reactive Black 5 by combined electrocoagulation-granular activated carbon adsorption-microwave regeneration process. Journal of Hazardous Materials, 2010, 175(1/2/3): 850-857
    [12] CHOU Y. C., LO S. L., KUO J., et al. Derivative mechanisms of organic acids in microwave oxidation of landfill leachate. Journal of Hazardous Materials, 2013, 254-255: 293-300
    [13] HOMEM V., ALVES A., SANTOS L. Microwave-assisted Fenton's oxidation of amoxicillin. Chemical Engineering Journal, 2013, 220: 35-44
    [14] BENATTI C. T., TAVARES C. R. G., GUEDES T. A. Optimization of Fenton's oxidation of chemical laboratory wastewaters using the response surface methodology. Journal of Environmental Management, 2006, 80(1): 66-74
    [15] DENG Yang, ENGLEHARDT J. D. Treatment of landfill leachate by the Fenton process. Water Research, 2006, 40(20): 3683-3694
    [16] SERPONE N., HORIKOSHI S., EMELINE A. V. Microwaves in advanced oxidation processes for environmental applications. A brief review. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2010, 11(2/3): 114-131
    [17] 柯灵非. 微波法处理中药废水的初步研究. 贵阳: 贵州大学硕士学位论文, 2009
    [18] LEE H., SHODA M. Removal of COD and color from livestock wastewater by the Fenton method. Journal of Hazardous Materials, 2008, 153(3): 1314-1319
    [19] CHEN Chuncheng, ZHAO Wei, LI Jinyi, et al. Formation and identification of intermediates in the visible-light-assisted photodegradation of sulforhodamine-B dye in Aqueous TiO2 dispersion. Environmental Science & Technology, 2002, 36(16): 3604-3611
    [20] 刘中兴, 谢传欣, 石宁, 等. 过氧化氢溶液分解特性研究. 齐鲁石油化工, 2009, 37(2): 99-102 LIU Zhongxing, XIE Chuanxin, SHI Ning, et al. Study on decomposition behavior of hydrogen peroxide solution. Qilu Petrochemical Technology, 2009, 37(2): 99-102(in Chinese)
    [21] PANIZZA M., CERISOLA G. Electro-Fenton degradation of synthetic dyes. Water Research, 2009, 43(2): 339-344
    [22] MAEZONO T., TOKUMURA M., SEKINE M., et al. Hydroxyl radical concentration profile in photo-Fenton oxidation process: Generation and consumption of hydroxyl radicals during the discoloration of azo-dye Orange II. Chemosphere, 2011, 82(10): 1422-1430
    [23] 王勇, 李伟光, 宿程远, 等. 响应曲面法优化均相Fenton深度处理皮革废水. 环境科学学报, 2012, 32(10): 2408-2414 WANG Yong, LI Weiguang, SU Chengyuan, et al. Optimization on homogeneous Fenton advanced treatment of tannery wastewater using response surface methodology. Acta Scientiae Circumstantiae, 2012, 32(10): 2408-2414(in Chinese)
    [24] FAN H. J., HUANG S. T., CHUNG W. H., et al. Degradation pathways of crystal violet by Fenton and Fenton-like systems: Condition optimization and intermediate separation and identification. Journal of Hazardous Materials, 2009, 171(1/2/3): 1032-1044
  • 加载中
计量
  • 文章访问数:  1395
  • HTML全文浏览数:  880
  • PDF下载数:  516
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-07-22
  • 刊出日期:  2016-10-20

微波-均相Fenton法深度处理工业聚集型村镇复合废水

  • 1.  环境保护部华南环境科学研究所, 广州 510655
  • 2.  兰州交通大学环境与市政工程学院, 兰州 730070
  • 3.  国家环境监测总站, 北京 100012
基金项目:

国家科技支撑计划项目(2012BAJ21B07)

广东省科技计划项目(2016A020221017)

环保百名人才工程

摘要: 为了提高工业聚集型村镇复合废水处理效率,对微波-均相Fenton技术进行了研究。基于Box-Behnken响应曲面法,重点考察了初始pH值、H2O2/Fe2+摩尔比、H2O2投加量、微波功率及微波辐射时间的单独及交互作用;建立以COD去除率为响应值的二次响应曲面模型并采用方差分析进行验证。结果表明,影响因子显著性排序为:初始pH值 > H2O2投加量 > 微波辐射功率 > H2O2/Fe2+摩尔比 > 微波辐射时间;其中初始pH和H2O2投加量之间交互作用显著;所建数学模型回归性较好,最优组合条件为:初始pH值3.43,H2O2投加量19.2 mmol·L-1,H2O2/Fe2+摩尔比39.42,微波辐射功率597.55 W,微波辐射时间5.12 min,该条件下COD实际去除率为95.3%,与模型预测结果相比偏差为4.7%。采用微波-均相Fenton法深度处理工业聚集型村镇复合废水,出水COD值完全满足《污水综合排放标准》(GB 8978-1996)一级排放标准COD≤100 mg·L-1。

English Abstract

参考文献 (24)

目录

/

返回文章
返回