基于逐步二次响应分析地下水修复优化模型

徐宗达, 何理, 卢宏玮, 樊星. 基于逐步二次响应分析地下水修复优化模型[J]. 环境工程学报, 2016, 10(6): 2862-2868. doi: 10.12030/j.cjee.201501167
引用本文: 徐宗达, 何理, 卢宏玮, 樊星. 基于逐步二次响应分析地下水修复优化模型[J]. 环境工程学报, 2016, 10(6): 2862-2868. doi: 10.12030/j.cjee.201501167
Xu Zongda, He Li, Lu Hongwei, Fan Xing. Groundwater remediation system optimization through stepwise quadratic response surface analysis[J]. Chinese Journal of Environmental Engineering, 2016, 10(6): 2862-2868. doi: 10.12030/j.cjee.201501167
Citation: Xu Zongda, He Li, Lu Hongwei, Fan Xing. Groundwater remediation system optimization through stepwise quadratic response surface analysis[J]. Chinese Journal of Environmental Engineering, 2016, 10(6): 2862-2868. doi: 10.12030/j.cjee.201501167

基于逐步二次响应分析地下水修复优化模型

  • 基金项目:

    国家自然科学基金优秀青年基金资助项目(51422903)

    国家自然科学基金资助项目(41271540)

  • 中图分类号: X703

Groundwater remediation system optimization through stepwise quadratic response surface analysis

  • Fund Project:
  • 摘要: 基于数值模拟解决地下水修复优化问题通常会给研究人员带来高额的计算成本。提出了一种基于参数的统计方法(逐步二次响应分析)用来创建一系列响应快速、易于使用的代理回归模型从而建立修复策略(井的抽注速率)和修复性能(污染物浓度)之间的关系。逐步二次响应分析主要有以下3个优点:它能够自动选择潜在的解释变量(各个修复井的抽注速率);灵活检验代理回归模型中的常数项、一次项、交叉项和二次项显著性水平对各个修复情景下污染物萘的浓度的影响;减小了优化过程中产生的巨大计算工作任务。将该改进方法应用于位于安徽省某电厂受石油污染含水层识别最佳的修复策略,结果表明,当识别最佳运行条件的时候,环境标准将会严重影响抽注速率的选择。
  • 加载中
  • [1] Chen Zhi. Integrated environmental modeling and risk assessment under uncertainty. Regina, Saskatchewan: Doctor Dissertation of University of Regina, 2000
    [2] 吴鸣, 吴剑锋, 林锦, 等. 地下油罐泄漏区污染源的自动识别. 环境科学学报, 2013, 33(12): 3251-3259 Wu Ming, Wu Jianfeng, Lin Jin, et al. Automated identification of the unknown contaminant source in groundwater at a leaking underground storage tank site. Acta Scientiae Circumstantiae, 2013, 33(12): 3251-3259(in Chinese)
    [3] 薛禹群, 张幼宽. 地下水污染防治在我国水体污染控制与治理中的双重意义. 环境科学学报, 2009, 29(3): 474-481 Xue Yuqun, Zhang Youkuan. Twofold significance of ground water pollution prevention in China's water pollution control. Acta Scientiae Circumstantiae, 2009, 29(3): 474-481(in Chinese)
    [4] Guerin T. F., Horner S., McGovern T., et al. An application of permeable reactive barrier technology to petroleum hydrocarbon contaminated groundwater. Water Research, 2002, 36(1): 15-24
    [5] Lee M., Kang H., Do W. Application of nonionic surfactant-enhanced in situ flushing to a diesel contaminated site. Water Research, 2005, 39(1): 139-146
    [6] Kermanshahi pour A., Karamanev D., Margaritis A. Biodegradation of petroleum hydrocarbons in an immobilized cell airlift bioreactor. Water Research, 2005, 39(15): 3704-3714
    [7] Lu H. W., Huang G. H., Zeng G. M., et al. An inexact two-stage fuzzy-stochastic programming model for water resources management. Water Resources Management, 2008, 22(8): 991-1016
    [8] Liu Shejiang, Li Xingang, Wang Hongxing. Hydraulics analysis for groundwater flow through permeable reactive barriers. Environmental Modeling & Assessment, 2011, 16(6): 591-598
    [9] Espinoza F. P., Minsker B. S., Golberg D. E. Adaptive hybrid genetic algorithm for groundwater remediation design. Journal of Water Resources Planning and Management, 2005, 131(1): 14-24
    [10] Maskey S., Jonoski A., Solomatine D. P. Groundwater remediation strategy using global optimization algorithms. Journal of Water Resources Planning and Management, 2002, 128(6): 431-440
    [11] Mulligan A. E., Ahlfeld D. P. A new interior-point boundary projection method for solving nonlinear groundwater pollution control problems. Operations Research, 2002, 50(4): 636-644
    [12] Baú D. A., Mayer A. S. Stochastic management of pump-and-treat strategies using surrogate functions. Advances in Water Resources, 2006, 29(12): 1901-1917
    [13] Baú D. A., Mayer A. S. Data-worth analysis for multiobjective optimal design of pump-and-treat remediation systems. Advances Water Resources, 2007, 30(8): 1815-1830
    [14] Gaur S., Chahar B. R., Graillot D. Analytic elements method and particle swarm optimization based simulation-optimization model for groundwater management. Journal of Hydrology, 2011, 402(3-4): 217-227
    [15] Gorelick S. M., Freeze R. A., Donohue D., et al. Groundwater Contamination: Optimal Capture and Containment. Chelsea, MI: Lewis Publishers, 1993
    [16] Ahlfeld D. P., Mulvery J. M., Pinder G. F., et al. Contaminated groundwater remediation design using simulation, optimization, and sensitivity theory: 1. Model development. Water Resource Research, 1988, 24(3): 431-441
    [17] Ahlfeld D. P., Mulvery J. M., Pinder G. F. Contaminated groundwater remediation design using simulation, optimization, and sensitivity theory: 2. Analysis of a field site. Water Resource Research, 1988, 24(3): 443-452
    [18] Atwood D. F., Gorelick S. M. Hydraulic gradient control for groundwater contaminant removal. Journal of Hydrology, 1985, 76(1-2): 85-106
    [19] Peralta H., Azarmnia H., Takahashi S. Embedding and response matrix techniques for maximizing steady-state ground-water extraction: Computational comparison. Ground Water, 1991, 29(3): 357-364
    [20] Aly A. H., Peralta R. C. Comparison of a genetic algorithm and mathematical programming to the design of groundwater cleanup systems. Water Resources Research, 1999, 35(8): 2415-2425
    [21] Lall U., Moon Y. I., Kwon H. H., et al. Locally weighted polynomial regression: Parameter choice and application to forecasts of the Great Salt Lake. Water Resources Research, 2006, 42(5): W05422
    [22] Sreekanth J., Datta B. Multi-objective management of saltwater intrusion in coastal aquifers using genetic programming and modular neural network based surrogate models. Journal of Hydrology, 2010, 393(3-4):245-256
    [23] He Li, Huang Guohe, Zeng Guangming, et al. An integrated simulation, inference, and optimization method for identifying groundwater remediation strategies at petroleum-contaminated aquifers in western Canada. Water Research, 2008, 42(10-11): 2629-2639
    [24] Ranjithan S., Eheart J. W., Garrett Jr. J. H. Neural network-based screening for groundwater reclamation under uncertainty. Water Resources Research, 1993, 29(3): 563-574
    [25] Rogers L. L., Dowla F. U., Johnson V. M. Optimal filed-scale groundwater remediation using neural networks and the genetic algorithm. Environmental Science & Technology, 1995, 29(5): 1145-1155
    [26] Huang Y. F., Li J. B., Huang G. H., et al. Integrated simulation-optimization approach for real-time dynamic modeling and process control of surfactant-enhanced remediation at petroleum-contaminated sites. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 2003, 7(2): 95-105
    [27] Iorgulescu I., Beven K. J. Nonparametric direct mapping of rainfall-runoff relationships: An alternative approach to data analysis and modeling? Water Resources Research, 2004, 40(8): W08403
    [28] Shieh H. J., Peralta R. C. Optimal in situ bioremediation design by hybrid genetic algorithm-simulated annealing. Journal of Water Resources Planning and Management, 2005, 131(1): 67-78
    [29] Prasad R. K., Mathur S. Health-risk-based remedial alternatives for contaminated aquifer management. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 2010, 14(1): 61-69
    [30] Suarez M. P., Rifai H. S. Modeling natural attenuation of total BTEX and benzene plumes with different kinetics. Groundwater Monitoring and Remediation, 2004, 24(3): 53-68
    [31] 环境保护部. HJ 25.3-2014污染场地风险评估技术导则. 北京: 中国环境科学出版社, 2014
  • 加载中
计量
  • 文章访问数:  2140
  • HTML全文浏览数:  1499
  • PDF下载数:  735
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-02-25
  • 刊出日期:  2016-06-03
徐宗达, 何理, 卢宏玮, 樊星. 基于逐步二次响应分析地下水修复优化模型[J]. 环境工程学报, 2016, 10(6): 2862-2868. doi: 10.12030/j.cjee.201501167
引用本文: 徐宗达, 何理, 卢宏玮, 樊星. 基于逐步二次响应分析地下水修复优化模型[J]. 环境工程学报, 2016, 10(6): 2862-2868. doi: 10.12030/j.cjee.201501167
Xu Zongda, He Li, Lu Hongwei, Fan Xing. Groundwater remediation system optimization through stepwise quadratic response surface analysis[J]. Chinese Journal of Environmental Engineering, 2016, 10(6): 2862-2868. doi: 10.12030/j.cjee.201501167
Citation: Xu Zongda, He Li, Lu Hongwei, Fan Xing. Groundwater remediation system optimization through stepwise quadratic response surface analysis[J]. Chinese Journal of Environmental Engineering, 2016, 10(6): 2862-2868. doi: 10.12030/j.cjee.201501167

基于逐步二次响应分析地下水修复优化模型

  • 1. 华北电力大学可再生能源学院, 北京 102206
基金项目:

国家自然科学基金优秀青年基金资助项目(51422903)

国家自然科学基金资助项目(41271540)

摘要: 基于数值模拟解决地下水修复优化问题通常会给研究人员带来高额的计算成本。提出了一种基于参数的统计方法(逐步二次响应分析)用来创建一系列响应快速、易于使用的代理回归模型从而建立修复策略(井的抽注速率)和修复性能(污染物浓度)之间的关系。逐步二次响应分析主要有以下3个优点:它能够自动选择潜在的解释变量(各个修复井的抽注速率);灵活检验代理回归模型中的常数项、一次项、交叉项和二次项显著性水平对各个修复情景下污染物萘的浓度的影响;减小了优化过程中产生的巨大计算工作任务。将该改进方法应用于位于安徽省某电厂受石油污染含水层识别最佳的修复策略,结果表明,当识别最佳运行条件的时候,环境标准将会严重影响抽注速率的选择。

English Abstract

参考文献 (31)

返回顶部

目录

/

返回文章
返回