矿区含砷尾矿及废渣稳定化研究

陆俏利, 瞿广飞, 吴斌, 宁平. 矿区含砷尾矿及废渣稳定化研究[J]. 环境工程学报, 2016, 10(5): 2587-2594. doi: 10.12030/j.cjee.201412257
引用本文: 陆俏利, 瞿广飞, 吴斌, 宁平. 矿区含砷尾矿及废渣稳定化研究[J]. 环境工程学报, 2016, 10(5): 2587-2594. doi: 10.12030/j.cjee.201412257
Lu Qiaoli, Qu Guangfei, Wu Bin, Ning Ping. Study on stabilization of arsenic tailings and waste residue[J]. Chinese Journal of Environmental Engineering, 2016, 10(5): 2587-2594. doi: 10.12030/j.cjee.201412257
Citation: Lu Qiaoli, Qu Guangfei, Wu Bin, Ning Ping. Study on stabilization of arsenic tailings and waste residue[J]. Chinese Journal of Environmental Engineering, 2016, 10(5): 2587-2594. doi: 10.12030/j.cjee.201412257

矿区含砷尾矿及废渣稳定化研究

  • 基金项目:

    国家自然科学基金资助项目(KKGL201222003)

    国家发改委重金属治理项目(2014-GH-03)

  • 中图分类号: X705

Study on stabilization of arsenic tailings and waste residue

  • Fund Project:
  • 摘要: 通过"硫酸-硝酸法"浸出实验,以砷的浸出浓度为控制指标,选用FeCl2为稳定药剂,对矿区砷渣进行药剂稳定化研究。考察Fe/As摩尔比、pH值、粒度、温度及稳定时间对砷浸出浓度的影响,通过研究稳定化前后砷形态的变化,探讨重金属迁移转化规律。结果表明:砷浸出浓度随FeCl2投加量增加而降低,当Fe/As摩尔比为1,pH=6.5~7.5时,常温下稳定化1 h后,砷浸出浓度低于2.5 mg/L且基本达到稳定,达到《危险废物填埋污染控制标准》(GB 18598-2001)的入场要求;随反应温度升高,砷浸出浓度略有升高;矿渣稳定化处理后,砷从生物有效性高和毒性大的形态逐渐转化为毒性小、稳定性强的形态,但矿物组成和化学组成不同,砷形态的迁移转化也略有不同。
  • [1] 陈桥, 胡克, 王建国, 等. 矿山土地污染危害及污染源探讨. 国土资源科技管理, 2004, 21(4): 50-53 Chen Qiao, Hu Ke, Wang Jianguo, et al. A discussion on hazard of polluted land at mining areas and source of pollution. Scientific and Technological Management of Land and Resources, 2004, 21(4): 50-53(in Chinese)
    [2] 王学刚, 王光辉, 刘金生. 矿区重金属污染土壤的修复技术研究现状. 工业安全与环保, 2010, 36(4): 29-31 Wang Xuegang, Wang Guanghui, Liu Jinsheng. Study on mining area's heavy-metal soil pollution remediation technology. Industrial Safety and Environmental Protection, 2010, 36(4): 29-31(in Chinese)
    [3] 黎秋君, 冯增贇, 宁晓军, 等. 广西矿区重金属污染研究现状与对策分析. 工业安全与环保, 2013, 39(10): 53-55 Li Qiujun, Feng Zengyun, Ning Xiaojun, et al. Research status and countermeasure analysis of mine lands contaminated by heavy metals in Guangxi. Industrial Safety and Environmental Protection, 2013, 39(10): 53-55(in Chinese)
    [4] 胡振琪, 凌海明. 金属矿山污染土地修复技术及实例研究. 金属矿山, 2003(6): 53-56 Hu Zhenqi, Ling Haiming. Investigation of remediation technology of contaminated land in metal mines. Metal Mine, 2003(6): 53-56(in Chinese)
    [5] 魏梁鸿, 周文琴. 砷矿资源开发与环境治理. 湖南地质, 1992, 11(3): 259-262 Wei Lianghong, Zhou Wenqin. Development of arsenic mineral resources and environment control. Hunan Geology, 1992, 11(3): 259-262(in Chinese)
    [6] Komárek M., Vaněk A., Ettler V. Chemical stabilization of metals and arsenic in contaminated soils using oxides:A review. Environmental Pollution, 2013, 172: 9-22
    [7] Lim K. T., Shukor M. Y., Wasoh H. Physical, chemical, and biological methods for the removal of arsenic compounds. BioMed Research International, 2014, 2(10): 1-9
    [8] Choi W. H., Lee S. R., Park J. Y. Cement based solidification/stabilization of arsenic-contaminated mine tailings. Waste Management, 2009, 29(5): 1766-1771
    [9] Silva J., de Mello J. W. V., Gasparon M. Effects of competing anions and iron bioreduction on arsenic desorption. Water, Air, & Soil Pollution, 2012, 223(9): 5707-5717
    [10] 龙新宪, 杨肖娥, 倪吾钟. 重金属污染土壤修复技术研究的现状与展望. 应用生态学报, 2002, 13(6): 757-762 Long Xinxian, Yang Xiao'e, Ni Wuzhong. Current situation and prospect on the remediation of soils contaminated by heavy metals. Chinese Journal of Applied Ecology, 2002, 13(6): 757-762(in Chinese)
    [11] Salt D. E., Smith R. D., Raskin I. Phytoremediation. Annual Review of Plant Physiology and Plant Molecular Biology, 1998, 49: 643-668
    [12] 郝汉舟, 陈同斌, 靳孟贵, 等. 重金属污染土壤稳定/固化修复技术研究进展. 应用生态学报, 2011, 22(3): 816-824 Hao Hanzhou, Chen Tongbin, Jin Menggui, et al. Recent advance in solidification /stabilization technology for the remediation of heavy metals contaminated soil. Chinese Journal of Applied Ecology, 2011, 22(3): 816-824(in Chinese)
    [13] 刘恩峰, 沈吉, 朱育新. 重金属元素BCR提取法及在太湖沉积物研究中的应用. 环境科学研究, 2005, 18(2): 57-60 Liu Enfeng, Shen Ji, Zhu Yuxin. Determination of heavy metal chemical forms by BCR method for Taihu Lake sediments. Research of Environmental Sciences, 2005, 18(2): 57-60(in Chinese)
    [14] Seidel H., G?rsch K., Amst?tter K., et al. Immobilization of arsenic in a tailings material by ferrous iron treatment. Water Research, 2005, 39(17): 4073-4082
    [15] Robins R. G. The stability and solubility of ferric arsenate: Sherritt's barium arsenate process. Metallurgical Transaction, 1985, 16(2): 404-406
    [16] 朱义年, 张学洪, 解庆林, 等. 砷酸盐的溶解度及其稳定性随pH值的变化. 环境化学, 2003, 22(5): 478-484 Zhu Yi'nian, Zhang Xuehong, Xie Qinglin, et al. Dependence of arsenate solubility and stability on pH value. Environmental Chemistry, 2003, 22(5): 478-484(in Chinese)
    [17] Krause E., Ettel V. A. Solubility and stability of scorodite, FeAsO4·2H2O: New data and further discussion. American Mineralogist, 1985, 73(7-8): 850-854
    [18] 向雪松, 柴立元, 闵小波, 等. 砷碱渣浸出液铁盐沉砷过程研究. 中国锰业, 2006, 24(1): 30-33 Xiang Xuesong, Chai Liyuan, Min Xiaobo, et al. A study on the removal of arsenic from leaching liquor of arsenic-containing alkaline dregs by precipitation as ferric arsenates. China's Manganese Industry, 2006, 24(1): 30-33(in Chinese)
    [19] Krause E., Ettel V. A. Solubilities and stabilities of ferric arsenate compounds. Hydrometallurgy, 1989, 22(3): 311-337
    [20] Palfy P., Vircikova E., Molnar L. Processing of arsenic waste by precipitation and solidification. Waste Management, 1999(19):55-59
    [21] 吕洪涛, 贾永锋, 闫洪, 等. pH值、碱类型及预停留时间对铁砷共沉淀物长期稳定性的影响. 生态学杂志, 2008, 27(9): 1576-1579 Lü Hongtao, Jia Yongfeng, Yan Hong, et al. Effects of pH, alkali type, and preequilibration duration on the long term stability of iron-arsenic coprecipitate. Chinese Journal of Ecology, 2008, 27(9): 1576-1579(in Chinese)
    [22] 赵萌, 郑发鸿, 王平艳. 含砷污泥的粉煤灰固化研究. 环境工程学报, 2007, 1(10): 112-115 Zhao Meng, Zheng Fahong, Wang Pingyan. A study on solidification of sludge with arsenic using fly ash. Chinese Journal of Environmental Engineering, 2007, 1(10): 112-115(in Chinese)
    [23] Bolan N., Mahimairaja S., Kunhikrishnan A., et al. Sorption-bioavailability nexus of arsenic and cadmium in variable charge soils. Journal of Hazardous Materials, 2013, 261: 725-732
    [24] Kumpiene J., Lagerkvist A., Maurice C. Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments:A review. Waste Management, 2008, 28(1): 215-225
    [25] Zhao Hongshao, Stanforth R. Competitive adsorption of phosphate and arsenate on goethite. Environmental Science & Technology, 2001, 35(24): 4753-4757
    [26] Luo Lie, Zhang Shuzhen, Shan Xiaoquan, et al. Arsenate sorption on two Chinese red soils evaluated with macroscopic measurements and extended X-ray absorption fine-structure spectroscopy. Environmental Toxicology and Chemistry, 2006, 25(12): 3118-3124
  • 加载中
计量
  • 文章访问数:  1638
  • HTML全文浏览数:  1311
  • PDF下载数:  704
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-01-30
  • 刊出日期:  2016-06-03
陆俏利, 瞿广飞, 吴斌, 宁平. 矿区含砷尾矿及废渣稳定化研究[J]. 环境工程学报, 2016, 10(5): 2587-2594. doi: 10.12030/j.cjee.201412257
引用本文: 陆俏利, 瞿广飞, 吴斌, 宁平. 矿区含砷尾矿及废渣稳定化研究[J]. 环境工程学报, 2016, 10(5): 2587-2594. doi: 10.12030/j.cjee.201412257
Lu Qiaoli, Qu Guangfei, Wu Bin, Ning Ping. Study on stabilization of arsenic tailings and waste residue[J]. Chinese Journal of Environmental Engineering, 2016, 10(5): 2587-2594. doi: 10.12030/j.cjee.201412257
Citation: Lu Qiaoli, Qu Guangfei, Wu Bin, Ning Ping. Study on stabilization of arsenic tailings and waste residue[J]. Chinese Journal of Environmental Engineering, 2016, 10(5): 2587-2594. doi: 10.12030/j.cjee.201412257

矿区含砷尾矿及废渣稳定化研究

  • 1. 昆明理工大学环境科学与工程学院, 昆明 650500
基金项目:

国家自然科学基金资助项目(KKGL201222003)

国家发改委重金属治理项目(2014-GH-03)

摘要: 通过"硫酸-硝酸法"浸出实验,以砷的浸出浓度为控制指标,选用FeCl2为稳定药剂,对矿区砷渣进行药剂稳定化研究。考察Fe/As摩尔比、pH值、粒度、温度及稳定时间对砷浸出浓度的影响,通过研究稳定化前后砷形态的变化,探讨重金属迁移转化规律。结果表明:砷浸出浓度随FeCl2投加量增加而降低,当Fe/As摩尔比为1,pH=6.5~7.5时,常温下稳定化1 h后,砷浸出浓度低于2.5 mg/L且基本达到稳定,达到《危险废物填埋污染控制标准》(GB 18598-2001)的入场要求;随反应温度升高,砷浸出浓度略有升高;矿渣稳定化处理后,砷从生物有效性高和毒性大的形态逐渐转化为毒性小、稳定性强的形态,但矿物组成和化学组成不同,砷形态的迁移转化也略有不同。

English Abstract

参考文献 (26)

返回顶部

目录

/

返回文章
返回