湿热水解预处理对餐厨废弃物液相厌氧发酵产氢潜力的影响

赵越, 朱金龙, 贾璇, 李鸣晓, 祝超伟, 席北斗, 夏天明. 湿热水解预处理对餐厨废弃物液相厌氧发酵产氢潜力的影响[J]. 环境工程学报, 2016, 10(5): 2609-2615. doi: 10.12030/j.cjee.201412241
引用本文: 赵越, 朱金龙, 贾璇, 李鸣晓, 祝超伟, 席北斗, 夏天明. 湿热水解预处理对餐厨废弃物液相厌氧发酵产氢潜力的影响[J]. 环境工程学报, 2016, 10(5): 2609-2615. doi: 10.12030/j.cjee.201412241
Zhao Yue, Zhu Jinlong, Jia Xuan, Li Mingxiao, Zhu Chaowei, Xi Beidou, Xia Tianming. Effect of hydrothermal pretreatment for kitchen waste liquid on anaerobic fermentation hydrogen production[J]. Chinese Journal of Environmental Engineering, 2016, 10(5): 2609-2615. doi: 10.12030/j.cjee.201412241
Citation: Zhao Yue, Zhu Jinlong, Jia Xuan, Li Mingxiao, Zhu Chaowei, Xi Beidou, Xia Tianming. Effect of hydrothermal pretreatment for kitchen waste liquid on anaerobic fermentation hydrogen production[J]. Chinese Journal of Environmental Engineering, 2016, 10(5): 2609-2615. doi: 10.12030/j.cjee.201412241

湿热水解预处理对餐厨废弃物液相厌氧发酵产氢潜力的影响

  • 基金项目:

    国家科技支撑计划项目(2012BAJ21B02)

    国家自然科学基金资助项目(51178090)

  • 中图分类号: X705

Effect of hydrothermal pretreatment for kitchen waste liquid on anaerobic fermentation hydrogen production

  • Fund Project:
  • 摘要: 为研究湿热水解预处理方法对餐厨废弃物液相厌氧发酵效果的影响,选取不同温度(80、120、150和200 ℃)、处理时间(40、50、60和70 min)和加水比例(40%、60%、80%和100%)条件下对餐厨废弃物进行预处理,并在中温(37±1)℃条件下对液相进行厌氧发酵潜力实验。结果表明:湿热水解预处理可有效提高餐厨废弃物液相的生物可利用性,进而提高厌氧发酵的产气效率,其中加水比例40%,150 ℃处理60 min条件下可浮油脱出量最高为67.7 mL/kg,与原样相比提高了2.65倍;氢气含量最高为62%,最高产氢速率为15.57 mL/h,累积产氢最高达194.28 mL/g VS,与原样相比分别提高了3.6、5.4和20倍,说明湿热水解预处理可有效提高餐厨废弃物液相的产氢潜力。
  • [1] 钟磊. 浅谈我国餐厨垃圾的回收与利用. 再生资源与循环经济, 2013, 6(2): 23-25 Zhong Lei. Discussion on recycling and utilization of kitchen garbage. Recyclable Resources and Cyclular Economy, 2013, 6(2): 23-25(in Chinese)
    [2] Cheng Hefa, Zhang Yanguo, Meng Aihong, et al. Municipal solid waste fueled power generation in China: A case study of waste-to-energy in Changchun city. Environmental Science and Technology, 2007, 41(21): 7509-7515
    [3] Kim S. H., Shin H. S. Effects of base-pretreatment on continuous enriched culture for hydrogen production from food waste. International Journal of Hydrogen Energy, 2008, 33(19): 5266-5274
    [4] Oh G., Zhang Lei, Jahng D. Osmoprotectants enhance methane production from the anaerobic digestion of food wastes containing a high content of salt. Journal of Chemical Technology & Biotechnology, 2008, 83(9): 1204-1210
    [5] Appels L., Van Assche A., Willems K., et al. Peracetic acid oxidation as an alternative pre-treatment for the anaerobic digestion of waste activated sludge. Bioresource Technology, 2011, 102(5): 4124-4130
    [6] Edelmann W., Baier U., Engeli H. Environmental aspects of the anaerobic digestion of the organic fraction of municipal solid wastes and of solid agricultural wastes. Water Science and Technology, 2005, 52(1-2): 203-208
    [7] Esposito G., Frunzo L., Giordano A., et al. Anaerobic co-digestion of organic wastes. Reviews in Environmental Science and Bio/Technology, 2012, 11(4): 325-341
    [8] Hecht C., Griehl C. Investigation of the accumulation of aromatic compounds during biogas production from kitchen waste. Bioresource Technology, 2009, 100(2): 654-658
    [9] 靳秋颖, 王伯铎. 餐厨垃圾资源化技术进展及发展方向研究. 环境工程, 2012, 30(S): 327-330 Jin Qiuying, Wang Boduo. Status and development of food residue resource technology. Environment Engineering, 2012, 30(S): 327-330(in Chinese)
    [10] Chen Ye, Cheng J. J., Creamer K. S. Inhibition of anaerobic digestion process: A review. Bioresource Technology, 2008, 99(10): 4044-4064
    [11] Phothilangka P., Schoen M. A., Huber M., et al. Prediction of thermal hydrolysis pretreatment on anaerobic digestion of waste activated sludge. Water Science and Technology, 2008, 58(7): 1467-1473
    [12] Liu Xiao, Wang Wei, Gao Xingbao, et al. Effect of thermal pretreatment on the physical and chemical properties of municipal biomass waste. Waste Management, 2012, 32(2): 249-255
    [13] Wang Wei, Hou Huahua, Hu Song, et al. Performance and stability improvements in anaerobic digestion of thermally hydrolyzed municipal biowaste by a biofilm system. Bioresource Technology, 2010, 101(6): 1715-1721
    [14] Zhou Yingjun, Takaoka M., Wang Wei, et al. Effect of thermal hydrolysis pre-treatment on anaerobic digestion of municipal biowaste: A pilot scale study in China. Journal of Bioscience and Bioengineering, 2013, 116(1): 101-105
    [15] 魏自民, 夏天明, 李鸣晓, 等. 不同湿热预处理条件对餐厨垃圾厌氧发酵产氢的影响. 环境科学研究, 2013, 26(11): 1239-1245 Wei Zimin, Xia Tianming, Li Mingxiao, et al. Effect of hydrothermal pretreatment for kitchen waste on anaerobic fermentation biohydrogen production. Research of Environmental Sciences, 2013, 26(11): 1239-1245(in Chinese)
    [16] Li Mingxiao, Xia Tianming, Zhu Chaowei, et al. Effect of short-time hydrothermal pretreatment of kitchen waste on biohydrogen production: Fluorescence spectroscopy coupled with parallel factor analysis. Bioresource Technology, 2014, 172: 382-390
    [17] Ma Jingxing, Duong T. H., Smits M., et al. Enhanced biomethanation of kitchen waste by different pre-treatments. Bioresource Technology, 2011, 102(2): 592-599
    [18] Kim I. S., Kim D. H., Hyun S. H. Effect of particle size and sodium ion concentration on anaerobic thermophilic food waste digestion. Water Science and Technology, 2000, 41(3): 67-73
    [19] Izumi K., Okishio Y. K., Nagao N., et al. Effects of particle size on anaerobic digestion of food waste. International Biodeterioration & Biodegradation, 2010, 64(7): 601-608
    [20] Zhang Cunsheng, Su Haijia, Tan Tianwei. Batch and semi-continuous anaerobic digestion of food waste in a dual solid-liquid system. Bioresource Technology, 2013, 145: 10-16
    [21] 宁娜, 任连海, 王攀, 等. 湿热-离心法分离餐厨废油脂. 环境科学研究, 2011, 24(12): 1430-1434 Ning Na, Ren Lianhai, Wang Pan, et al. Hydrothermal process-centrifugation for separation of waste grease from restaurant garbage. Research of Environmental Sciences, 2011, 24(12): 1430-1434(in Chinese)
    [22] 赵凯, 许鹏举, 谷广烨. 3, 5-二硝基水杨酸比色法测定还原糖含量的研究. 食品科学, 2008, 29(8): 534-536 Zhao Kai, Xu Pengju, Gu Guangye. Study on determination of reducing sugar content using 3, 5-dinitrosalicylic acid method. Food Science, 2008, 29(8): 534-536(in Chinese)
    [23] Watchararuji K., Goto M., Sasaki M., et al. Value-added subcritical water hydrolysate from rice bran and soybean meal. Bioresource Technology, 2008, 99(14): 6207-6213
    [24] Scherer P. A., Vollmer G. R., Fakhouri T., et al. Development of a methanogenic process to degrade exhaustively the organic fraction of municipal "grey waste" under thermophilic and hyperthermophilic conditions. Water Science and Technology, 2000, 41(3): 83-91
    [25] Allen S. G., Schulman D., Lichwa J., et al. A comparison between hot liquid water and steam fractionation of corn fiber. Industrial & Engineering Chemistry Research, 2001, 40(13): 2934-2941
    [26] Elbeshbishy E., Hafez H., Dhar B. R., et al. Single and combined effect of various pretreatment methods for biohydrogen production from food waste. International Journal of Hydrogen Energy, 2011, 36(17): 11379-11387
    [27] 王佳明, 蒋建国, 宫常修, 等. 超声波预处理对餐厨垃圾产VFAs的影响. 中国环境科学, 2014, 34(5): 1207-1211 Wang Jiaming, Jiang Jianguo, Gong Changxiu, et al. Effects of ultrasonic pre-treatment on the production of VFAs from food waste. China Environmental Science, 2014, 34(5): 1207-1211(in Chinese)
    [28] Torres M. L., Lloréns M. D. C. E. Effect of alkaline pretreatment on anaerobic digestion of solid wastes. Waste Management, 2008, 28(11): 2229-2234
    [29] Zonta Ž., Alves M. M., Flotats X., et al. Modelling inhibitory effects of long chain fatty acids in the anaerobic digestion process. Water Research, 2013, 47(3): 1369-1380
    [30] Zeng Ke, Wan Hongyou, Meng Fanchao, et al. Discussion on oil and grease removal in slaughterhouse and soybean processing wastewater treatment. Environmental Science & Technology, 2007, 30(4): 91-92
    [31] Kondusamy D., Kalamdhad A. S. Pre-treatment and anaerobic digestion of food waste for high rate methane production: A review. Journal of Environmental Chemical Engineering, 2014, 2(3): 1821-1830
    [32] 何曼妮. 不同温度对餐厨垃圾酸化及其产物甲烷化的影响研究. 北京: 北京化工大学硕士学位论文, 2013 He Manni. Effect of temperatures on hydrolysis acidification of food waste and methane conversion of the acidified products. Beijing: Master Dissertation of Beijing Univercity of Chemical Technology, 2013(in Chinese)
    [33] 邹星星, 郑正, 杨世关, 等. 汽爆预处理对互花米草厌氧发酵产气特性的影响. 中国环境科学, 2009, 29(10): 1117-1120 Zou Xingxing, Zheng Zheng, Yang Shiguan, et al. Effect of steam explosion pretreatment on biogas production characteristics of anaerobic fermentation of Spartina alterniflora. China Environmental Science, 2009, 29(10): 1117-1120(in Chinese)
  • 加载中
计量
  • 文章访问数:  1586
  • HTML全文浏览数:  1297
  • PDF下载数:  648
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-03-10
  • 刊出日期:  2016-06-03
赵越, 朱金龙, 贾璇, 李鸣晓, 祝超伟, 席北斗, 夏天明. 湿热水解预处理对餐厨废弃物液相厌氧发酵产氢潜力的影响[J]. 环境工程学报, 2016, 10(5): 2609-2615. doi: 10.12030/j.cjee.201412241
引用本文: 赵越, 朱金龙, 贾璇, 李鸣晓, 祝超伟, 席北斗, 夏天明. 湿热水解预处理对餐厨废弃物液相厌氧发酵产氢潜力的影响[J]. 环境工程学报, 2016, 10(5): 2609-2615. doi: 10.12030/j.cjee.201412241
Zhao Yue, Zhu Jinlong, Jia Xuan, Li Mingxiao, Zhu Chaowei, Xi Beidou, Xia Tianming. Effect of hydrothermal pretreatment for kitchen waste liquid on anaerobic fermentation hydrogen production[J]. Chinese Journal of Environmental Engineering, 2016, 10(5): 2609-2615. doi: 10.12030/j.cjee.201412241
Citation: Zhao Yue, Zhu Jinlong, Jia Xuan, Li Mingxiao, Zhu Chaowei, Xi Beidou, Xia Tianming. Effect of hydrothermal pretreatment for kitchen waste liquid on anaerobic fermentation hydrogen production[J]. Chinese Journal of Environmental Engineering, 2016, 10(5): 2609-2615. doi: 10.12030/j.cjee.201412241

湿热水解预处理对餐厨废弃物液相厌氧发酵产氢潜力的影响

  • 1. 东北农业大学生命科学学院, 哈尔滨 150030
  • 2. 中国环境科学研究院, 北京 100012
基金项目:

国家科技支撑计划项目(2012BAJ21B02)

国家自然科学基金资助项目(51178090)

摘要: 为研究湿热水解预处理方法对餐厨废弃物液相厌氧发酵效果的影响,选取不同温度(80、120、150和200 ℃)、处理时间(40、50、60和70 min)和加水比例(40%、60%、80%和100%)条件下对餐厨废弃物进行预处理,并在中温(37±1)℃条件下对液相进行厌氧发酵潜力实验。结果表明:湿热水解预处理可有效提高餐厨废弃物液相的生物可利用性,进而提高厌氧发酵的产气效率,其中加水比例40%,150 ℃处理60 min条件下可浮油脱出量最高为67.7 mL/kg,与原样相比提高了2.65倍;氢气含量最高为62%,最高产氢速率为15.57 mL/h,累积产氢最高达194.28 mL/g VS,与原样相比分别提高了3.6、5.4和20倍,说明湿热水解预处理可有效提高餐厨废弃物液相的产氢潜力。

English Abstract

参考文献 (33)

返回顶部

目录

/

返回文章
返回