Fe3O4-TiO2Al吸附剂去除水中氟离子

蒋步青, 李继香, 邱长泉, 何淑英, 康长安, 轩军旗, 潘文灏. Fe3O4-TiO2Al吸附剂去除水中氟离子[J]. 环境工程学报, 2016, 10(5): 2259-2264. doi: 10.12030/j.cjee.201412221
引用本文: 蒋步青, 李继香, 邱长泉, 何淑英, 康长安, 轩军旗, 潘文灏. Fe3O4-TiO2Al吸附剂去除水中氟离子[J]. 环境工程学报, 2016, 10(5): 2259-2264. doi: 10.12030/j.cjee.201412221
Jiang Buqing, Li Jixiang, Qiu Changquan, He Shuying, Kang Changan, Xuan Junqi, Pan Wenhao. Removal of fluoride ions from wastewaters by sorbent Fe3O4-TiO2·nH2O·Al[J]. Chinese Journal of Environmental Engineering, 2016, 10(5): 2259-2264. doi: 10.12030/j.cjee.201412221
Citation: Jiang Buqing, Li Jixiang, Qiu Changquan, He Shuying, Kang Changan, Xuan Junqi, Pan Wenhao. Removal of fluoride ions from wastewaters by sorbent Fe3O4-TiO2·nH2O·Al[J]. Chinese Journal of Environmental Engineering, 2016, 10(5): 2259-2264. doi: 10.12030/j.cjee.201412221

Fe3O4-TiO2Al吸附剂去除水中氟离子

  • 基金项目:

    国家自然科学基金资助项目(51408588)

    上海市人才发展资金资助项目(2012064)

    浦东新区科技发展基金(PKJ2014-C12)

  • 中图分类号: X703

Removal of fluoride ions from wastewaters by sorbent Fe3O4-TiO2·nH2O·Al

  • Fund Project:
  • 摘要: 以实验室制备的Fe3O4-TiO2·nH2O·Al吸附剂处理模拟和实际含氟废水,探讨了吸附剂用量、体系pH、吸附温度和吸附时间等因素对F-吸附效果的影响。结果表明:在初始F-浓度16.1 mg/L,起始pH 8.0,吸附剂投加量5 g/L,室温(约25 ℃)下吸附15 min时,模拟和实际废水的出水F-均可达到3O4-TiO2·nH2O·Al具有一定的实际应用价值。含氟水溶液初始pH对Fe3O4-TiO2·nH2O·Al吸附F-性能影响较大。在pH 介于3.0~5.0 时,吸附容量较大,过高或过低都会导致吸附容量降低。Fe3O4-TiO2·nH2O·Al吸附F-的过程为放热反应,升温不利于F-的吸附。该吸附剂吸附F- 的过程为化学吸附,符合准二级动力学模型,等温线拟合接近Freundlich吸附等温线。
  • [1] Singh S., Lataye D. H., Wasewar K. L., et al. Removal of fluoride from aqueous solution: Status and techniques. Desalination and Water Treatment, 2013, 51(16-18): 3233-3247
    [2] Drouiche N., Aoudj S., Lounici H., et al. Development of an empirical model for fluoride removal from photovoltaic wastewater by electrocoagulation process. Desalination and Water Treatment, 2011, 29(1-3): 96-102
    [3] Gouider M., Feki M., Sayadi S. Treatment of wastewaters from phosphate fertilizer industry. Environmental Progress & Sustainable Energy, 2014, 33(2): 463-471
    [4] Khatibikamal V., Torabian A., Janpoor F., et al. Fluoride removal from industrial wastewater using electrocoagulation and its adsorption kinetics. Journal of Hazardous Materials, 2010, 179(1-3): 276-280
    [5] Viswanathan N., Prabhu S. M., Meenakshi S. Development of amine functionalized co-polymeric resins for selective fluoride sorption. Journal of Fluorine Chemistry, 2013, 153: 143-150
    [6] Ho Y. S., Mckay G. A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Process Safety and Environmental Protection, 1998, 76(4): 332-340
    [7] 游俏, 袁兴中, 曾光明, 等. 腐熟污泥对废水中 Cd(Ⅱ)与Zn(Ⅱ)的吸附性能研究. 环境工程学报, 2011, 5(1): 1-6 You Qiao, Yuan Xingzhong, Zeng Guangming, et al. Study on absorption of Zn(Ⅱ) and Cd(Ⅱ) from aqueous solution using composted sludge as absorbent. Chinese Journal of Environmental Engineering, 2011, 5(1): 1-6(in Chinese)
    [8] Zhou Chengjun, Wu Qinglin, Lei Tingzhou, et al. Adsorption kinetic and equilibrium studies for methylene blue dye by partially hydrolyzed polyacrylamide/cellulose nanocrystal nano-composite hydrogels. Chemical Engineering Journal, 2014, 251: 17-24
    [9] 荆晓生, 刘福强, 凌盼盼, 等. 螯合树脂S930对Cu(Ⅱ)、Pb(Ⅱ)、Cd(Ⅱ)的吸附性能与作用机理研究. 离子交换与吸附, 2010, 26(6): 481- 489 Jing Xiaosheng, Liu Fuqiang, Ling Panpan, et al. Adsorption behaviors and mechanisms of S930 chelating resin toward Cu(Ⅱ), Pb(Ⅱ) and Cd(Ⅱ) from aqueous media. Ion Exchange and Adsorption, 2010, 26(6): 481- 489(in Chinese)
    [10] Cheng Jiemin, Meng Xiaoguang, Jing Chuanyong, et al. La3+-modified activated alumina for fluoride removal from water. Journal of Hazardous Materials, 2014, 278: 343-349
    [11] Pinskii D. L., Minkina T. M., Mandzhieva S. S., et al. Adsorption features of Cu(II), Pb(II), and Zn(II) by an ordinary chernozem from nitrate, chloride, acetate, and sulfate solutions. Eurasian Soil Science, 2014, 47(1): 10-17
    [12] 雒和敏, 曹国璞. 活性炭对含铅废水吸附特性研究. 环境工程学报, 2010, 4(2): 373-376 Luo Hemin, Gao Guopu. Study on adsorption characteristics of activated carbon to leaded wastewater. Chinese Journal of Environmental Engineering, 2010, 4(2): 373-376(in Chinese)
    [13] Timofeev K. L., Naboichenko S. S. Mechanism of sorption equilibrium in the recovery of zinc, calcium, and magnesium from wastewater by the use of iminodiacetate resins. Metallurgist, 2013, 57(1-2): 95-99
    [14] Masoumi A., Ghaemy M. Removal of metal ions from water using nanohydrogel tragacanth gum-g-polyamidoxime: Isotherm and kinetic study. Carbohydrate Polymers, 2014, 108: 206-215
    [15] 杨丽君, 刘雪岩, 姜鑫, 等. 纳米TiO2去除氟离子的性能. 应用化学, 2012, 29(11): 1278-1285 Yang Lijun, Liu Xueyan, Jiang Xin, et al. Properties of Nano-TiO2 for removal of fluoride ions. Chinese Journal of Applied Chemistry, 2012, 29(11): 1278-1285(in Chinese)
    [16] Sujana M. G., Pradhan H. K., Anand S. Studies on sorption of some geomaterials for fluoride removal from aqueous solutions. Journal of Hazardous Materials, 2009, 161(1): 120-125
    [17] Daifullah A. A. M., Yakout S. M., Elreefy S. A. Adsorption of fluoride in aqueous solutions using KMnO4-modified activated carbon derived from steam pyrolysis of rice straw. Journal of Hazardous Materials, 2007, 147(1-2): 633-643
    [18] Khan A. A., Singh R. P. Adsorption thermodynamics of carbofuran on Sn(IV) arsenosilicate in H+, Na+ and Ca2+ forms. Colloids and Surfaces, 1987, 24(1): 33-42
  • 加载中
计量
  • 文章访问数:  2763
  • HTML全文浏览数:  2375
  • PDF下载数:  880
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-03-13
  • 刊出日期:  2016-06-03
蒋步青, 李继香, 邱长泉, 何淑英, 康长安, 轩军旗, 潘文灏. Fe3O4-TiO2Al吸附剂去除水中氟离子[J]. 环境工程学报, 2016, 10(5): 2259-2264. doi: 10.12030/j.cjee.201412221
引用本文: 蒋步青, 李继香, 邱长泉, 何淑英, 康长安, 轩军旗, 潘文灏. Fe3O4-TiO2Al吸附剂去除水中氟离子[J]. 环境工程学报, 2016, 10(5): 2259-2264. doi: 10.12030/j.cjee.201412221
Jiang Buqing, Li Jixiang, Qiu Changquan, He Shuying, Kang Changan, Xuan Junqi, Pan Wenhao. Removal of fluoride ions from wastewaters by sorbent Fe3O4-TiO2·nH2O·Al[J]. Chinese Journal of Environmental Engineering, 2016, 10(5): 2259-2264. doi: 10.12030/j.cjee.201412221
Citation: Jiang Buqing, Li Jixiang, Qiu Changquan, He Shuying, Kang Changan, Xuan Junqi, Pan Wenhao. Removal of fluoride ions from wastewaters by sorbent Fe3O4-TiO2·nH2O·Al[J]. Chinese Journal of Environmental Engineering, 2016, 10(5): 2259-2264. doi: 10.12030/j.cjee.201412221

Fe3O4-TiO2Al吸附剂去除水中氟离子

  • 1.  上海大学环境与化学工程学院, 上海 200444
  • 2.  中国科学院上海高等研究院, 上海 201210
  • 3.  上海市节能减排中心, 上海 200003
  • 4.  江西省环境监测中心站, 南昌 330077
  • 5.  中建国际投资(西安)有限公司, 西安 710000
基金项目:

国家自然科学基金资助项目(51408588)

上海市人才发展资金资助项目(2012064)

浦东新区科技发展基金(PKJ2014-C12)

摘要: 以实验室制备的Fe3O4-TiO2·nH2O·Al吸附剂处理模拟和实际含氟废水,探讨了吸附剂用量、体系pH、吸附温度和吸附时间等因素对F-吸附效果的影响。结果表明:在初始F-浓度16.1 mg/L,起始pH 8.0,吸附剂投加量5 g/L,室温(约25 ℃)下吸附15 min时,模拟和实际废水的出水F-均可达到3O4-TiO2·nH2O·Al具有一定的实际应用价值。含氟水溶液初始pH对Fe3O4-TiO2·nH2O·Al吸附F-性能影响较大。在pH 介于3.0~5.0 时,吸附容量较大,过高或过低都会导致吸附容量降低。Fe3O4-TiO2·nH2O·Al吸附F-的过程为放热反应,升温不利于F-的吸附。该吸附剂吸附F- 的过程为化学吸附,符合准二级动力学模型,等温线拟合接近Freundlich吸附等温线。

English Abstract

参考文献 (18)

返回顶部

目录

/

返回文章
返回