介孔二氧化钛/导电碳毡光电极制备及其苯甲醛降解机理分析

李铭, 李佑稷, 徐鹏, 林晓, 李小康. 介孔二氧化钛/导电碳毡光电极制备及其苯甲醛降解机理分析[J]. 环境工程学报, 2016, 10(5): 2567-2575. doi: 10.12030/j.cjee.201412215
引用本文: 李铭, 李佑稷, 徐鹏, 林晓, 李小康. 介孔二氧化钛/导电碳毡光电极制备及其苯甲醛降解机理分析[J]. 环境工程学报, 2016, 10(5): 2567-2575. doi: 10.12030/j.cjee.201412215
Li Ming, Li Youji, Xu Peng, Lin Xiao, Li Xiaokang. Preparation, photoelectric catalysis performance and degradation mechanism of mesoporous titanium dioxide/conductive carbon felt electrode[J]. Chinese Journal of Environmental Engineering, 2016, 10(5): 2567-2575. doi: 10.12030/j.cjee.201412215
Citation: Li Ming, Li Youji, Xu Peng, Lin Xiao, Li Xiaokang. Preparation, photoelectric catalysis performance and degradation mechanism of mesoporous titanium dioxide/conductive carbon felt electrode[J]. Chinese Journal of Environmental Engineering, 2016, 10(5): 2567-2575. doi: 10.12030/j.cjee.201412215

介孔二氧化钛/导电碳毡光电极制备及其苯甲醛降解机理分析

  • 基金项目:

    教育部新世纪优秀人才支撑计划(NCET-12-0720)

    湖南省自然科学杰出青年基金(13JJ1023)

    湖南省高校科技创新团队支持计划

    吉首大学研究生项目资助(2014KFXM03)

  • 中图分类号: X701

Preparation, photoelectric catalysis performance and degradation mechanism of mesoporous titanium dioxide/conductive carbon felt electrode

  • Fund Project:
  • 摘要: 基于表面活性剂十六烷基三甲基溴化铵为液晶模板,以四氯化钛为钛源,导电碳毡为载体,通过超声波辅助水热法(ultrasound-assisted hydrothermal method, UH)制备介孔二氧化钛/导电碳毡复合体材料(mesoporous titania/conductive carbon felt, MPT/CCF) (UH-MPT/CCF),为了探讨其结构与光电催化活性,直接采用水热法制备介孔二氧化钛/导电碳毡(H-MPT/CCF)和无孔二氧化钛/导电碳毡(no porous titania/conductive carbon felt, NPT/CCF)复合体材料,利用XRD、XPS、SEM、TEM、TG-DTA、N2吸附-脱附等方法对样品结构进行表征,以气相苯甲醛为目标降解物,研究UH-MPT/CCF的光电催化性能及其对气相苯甲醛的降解机理。结果表明,UH-MPT/CCF材料通过介孔化增加了活性中心(·OH和Ti3+),通过CCF的负载提高了对目标降解物的吸附富集,通过偏电压促进光生电子-空穴对的分离,在这三方的协同作用下UH-MPT/CCF对苯甲醛在100 min内降解率为83.9%,分别是H-MPT/CCF、NPT/CCF和P25/CCF的1.38、1.75和2.38倍。气相苯甲醛光电催化降解产生的主要中间产物是苯、1,3-己二烯-5-炔,以及少量的3,3,5-三甲基环己烯、2,3-二甲基-1,3-庚二烯、3-甲基-3-环己烯-1-醇等。根据GC/MS分析结果,进一步提出了气相苯甲醛的降解机理。
  • [1] Frank S. N., Bard A. J. Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders. The Journal of Physical Chemistry, 1977, 81(15): 1484-1488
    [2] Huang Haibao, Huang Huiling, Zhang Lu, et al. Enhanced degradation of gaseous benzene under vacuum ultraviolet (VUV) irradiation over TiO2 modified by transition metals. Chemical Engineering Journal, 2015, 259: 534-541
    [3] Turki A., Guillard C., Dappozze F., et al. Phenol photocatalytic degradation over anisotropic TiO2 nanomaterials: Kinetic study, adsorption isotherms and formal mechanisms. Applied Catalysis B: Environmental, 2015, 163: 404-414
    [4] Khan R., Hassan M. S., Jang L. W., et al. Low-temperature synthesis of ZnO quantum dots for photocatalytic degradation of methyl orange dye under UV irradiation. Ceramics International, 2014, 40(9): 14827-14831
    [5] Wang Xi, Li Xiaoyan. Photocatalytic hydrogen generation with simultaneous organic degradation by a visible light-driven CdS/ZnS film catalyst. Materials Science and Engineering: B, 2014, 181: 86-92
    [6] Zhu Xinle, Yuan Chunwei, Bao Yanchu, et al. Photocatalytic degradation of pesticide pyridaben on TiO2 particles. Journal of Molecular Catalysis A: Chemical, 2005, 229(1-2): 95-105
    [7] Zhang Jiang, Huang Zhenghong, Xu Yong, et al. Carbon-coated TiO2 composites for the photocatalytic degradation of low concentration benzene. New Carbon Materials, 2011, 26(1): 63-70
    [8] Hsu Y. Y., Hsiung T. L., Wang H. P., et al. Photocatalytic degradation of spill oils on TiO2 nanotube thin films. Marine Pollution Bulletin, 2008, 57(6-12): 873-876
    [9] Liang Wenjun, Li Jian, Jin Yuquan. Photo-catalytic degradation of gaseous formaldehyde by TiO2/UV, Ag/TiO2/UV and Ce/TiO2/UV. Building and Environment, 2012, 51: 345-350
    [10] Sajjad A. K. L., Shamaila S., Tian Baozhu, et al. Comparative studies of operational parameters of degradation of azo dyes in visible light by highly efficient WOx/TiO2 photocatalyst. Journal of Hazardous Materials, 2010, 177(1-3): 781-791
    [11] Sano T., Negishi N., Takeuchi K., et al. Degradation of toluene and acetaldehyde with Pt-loaded TiO2 catalyst and parabolic trough concentrator. Solar Energy, 2004, 77(5): 543-552
    [12] Hussain M., Russo N., Saracco G. Photocatalytic abatement of VOCs by novel optimized TiO2 nanoparticles. Chemical Engineering Journal, 2011, 166(1): 138-149
    [13] Sánchez-García J. L., García-Alamilla R., González-Chávez M. M., et al. Dehydrogenation and diels-alder reactions in a one-pot synthesis of benzaldehyde from n-butane over acid catalysts. Catalysis Communications, 2012, 27(5): 154-158
    [14] Jia Aizhong, Lou Lanlan, Zhang Cui, et al. Selective oxidation of benzyl alcohol to benzaldehyde with hydrogen peroxide over alkali-treated ZSM-5 zeolite catalysts. Journal of Molecular Catalysis A: Chemical, 2009, 306(1-2): 123-129
    [15] Chen Shuiping, Hong Jianxun, Yang Hongxiao, et al. Adsorption of uranium (VI) from aqueous solution using a novel graphene oxide-activated carbon felt composite. Journal of Environmental Radioactivity, 2013, 126: 253-258
    [16] Deng Qian, Li Xinyang, Zuo Jiane, et al. Power generation using an activated carbon fiber felt cathode in an upflow microbial fuel cell. Journal of Power Sources, 2010, 195(4): 1130-1135
    [17] Tian Hua, Ma Junfeng, Li Kang, et al. Hydrothermal synthesis of S-doped TiO2 nanoparticles and their photocatalytic ability for degradation of methyl orange. Ceramics International, 2009, 35(3): 1289- 1292
    [18] Zhou Wei, Sun Fanfei, Pan Kai, et al. Well-ordered large-pore mesoporous anatase TiO2 with remarkably high thermal stability and improved crystallinity: Preparation, characterization, and photocatalytic performance. Advanced Functional Materials, 2011, 21(10): 1922-1930
    [19] Foo K. Y., Hameed B. H. Decontamination of textile wastewater via TiO2/activated carbon composite materials. Advances in Colloid and Interface Science, 2010, 159(2): 130-143
    [20] Yao Shuhua, Li Jinyang, Shi Zhongliang. Immobilization of TiO2 nanoparticles on activated carbon fiber and its photodegradation performance for organic pollutants. Particuology, 2010, 8(3): 272-278
    [21] Wang Wen, Ku Y. Photocatalytic degradation of gaseous benzene in air streams by using an optical fiber photoreactor. Journal of Photochemistry and Photobiology A: Chemistry, 2003, 159(1): 47-59
  • 加载中
计量
  • 文章访问数:  1202
  • HTML全文浏览数:  770
  • PDF下载数:  331
  • 施引文献:  0
出版历程
  • 收稿日期:  2015-01-19
  • 刊出日期:  2016-06-03
李铭, 李佑稷, 徐鹏, 林晓, 李小康. 介孔二氧化钛/导电碳毡光电极制备及其苯甲醛降解机理分析[J]. 环境工程学报, 2016, 10(5): 2567-2575. doi: 10.12030/j.cjee.201412215
引用本文: 李铭, 李佑稷, 徐鹏, 林晓, 李小康. 介孔二氧化钛/导电碳毡光电极制备及其苯甲醛降解机理分析[J]. 环境工程学报, 2016, 10(5): 2567-2575. doi: 10.12030/j.cjee.201412215
Li Ming, Li Youji, Xu Peng, Lin Xiao, Li Xiaokang. Preparation, photoelectric catalysis performance and degradation mechanism of mesoporous titanium dioxide/conductive carbon felt electrode[J]. Chinese Journal of Environmental Engineering, 2016, 10(5): 2567-2575. doi: 10.12030/j.cjee.201412215
Citation: Li Ming, Li Youji, Xu Peng, Lin Xiao, Li Xiaokang. Preparation, photoelectric catalysis performance and degradation mechanism of mesoporous titanium dioxide/conductive carbon felt electrode[J]. Chinese Journal of Environmental Engineering, 2016, 10(5): 2567-2575. doi: 10.12030/j.cjee.201412215

介孔二氧化钛/导电碳毡光电极制备及其苯甲醛降解机理分析

  • 1. 吉首大学化学化工学院, 吉首 416000
基金项目:

教育部新世纪优秀人才支撑计划(NCET-12-0720)

湖南省自然科学杰出青年基金(13JJ1023)

湖南省高校科技创新团队支持计划

吉首大学研究生项目资助(2014KFXM03)

摘要: 基于表面活性剂十六烷基三甲基溴化铵为液晶模板,以四氯化钛为钛源,导电碳毡为载体,通过超声波辅助水热法(ultrasound-assisted hydrothermal method, UH)制备介孔二氧化钛/导电碳毡复合体材料(mesoporous titania/conductive carbon felt, MPT/CCF) (UH-MPT/CCF),为了探讨其结构与光电催化活性,直接采用水热法制备介孔二氧化钛/导电碳毡(H-MPT/CCF)和无孔二氧化钛/导电碳毡(no porous titania/conductive carbon felt, NPT/CCF)复合体材料,利用XRD、XPS、SEM、TEM、TG-DTA、N2吸附-脱附等方法对样品结构进行表征,以气相苯甲醛为目标降解物,研究UH-MPT/CCF的光电催化性能及其对气相苯甲醛的降解机理。结果表明,UH-MPT/CCF材料通过介孔化增加了活性中心(·OH和Ti3+),通过CCF的负载提高了对目标降解物的吸附富集,通过偏电压促进光生电子-空穴对的分离,在这三方的协同作用下UH-MPT/CCF对苯甲醛在100 min内降解率为83.9%,分别是H-MPT/CCF、NPT/CCF和P25/CCF的1.38、1.75和2.38倍。气相苯甲醛光电催化降解产生的主要中间产物是苯、1,3-己二烯-5-炔,以及少量的3,3,5-三甲基环己烯、2,3-二甲基-1,3-庚二烯、3-甲基-3-环己烯-1-醇等。根据GC/MS分析结果,进一步提出了气相苯甲醛的降解机理。

English Abstract

参考文献 (21)

返回顶部

目录

/

返回文章
返回